Metamath Proof Explorer


Theorem ordthauslem

Description: Lemma for ordthaus . (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis ordthauslem.1 X=domR
Assertion ordthauslem RTosetRelAXBXARBABmordTopRnordTopRAmBnmn=

Proof

Step Hyp Ref Expression
1 ordthauslem.1 X=domR
2 simpll1 RTosetRelAXBXARBABxX|¬BRx¬xRA=RTosetRel
3 simpll3 RTosetRelAXBXARBABxX|¬BRx¬xRA=BX
4 1 ordtopn2 RTosetRelBXxX|¬BRxordTopR
5 2 3 4 syl2anc RTosetRelAXBXARBABxX|¬BRx¬xRA=xX|¬BRxordTopR
6 simpll2 RTosetRelAXBXARBABxX|¬BRx¬xRA=AX
7 1 ordtopn1 RTosetRelAXxX|¬xRAordTopR
8 2 6 7 syl2anc RTosetRelAXBXARBABxX|¬BRx¬xRA=xX|¬xRAordTopR
9 breq2 x=ABRxBRA
10 9 notbid x=A¬BRx¬BRA
11 simprr RTosetRelAXBXARBABAB
12 simpl1 RTosetRelAXBXARBABRTosetRel
13 tsrps RTosetRelRPosetRel
14 12 13 syl RTosetRelAXBXARBABRPosetRel
15 simprl RTosetRelAXBXARBABARB
16 psasym RPosetRelARBBRAA=B
17 16 3expia RPosetRelARBBRAA=B
18 14 15 17 syl2anc RTosetRelAXBXARBABBRAA=B
19 18 necon3ad RTosetRelAXBXARBABAB¬BRA
20 11 19 mpd RTosetRelAXBXARBAB¬BRA
21 20 adantr RTosetRelAXBXARBABxX|¬BRx¬xRA=¬BRA
22 10 6 21 elrabd RTosetRelAXBXARBABxX|¬BRx¬xRA=AxX|¬BRx
23 breq1 x=BxRABRA
24 23 notbid x=B¬xRA¬BRA
25 24 3 21 elrabd RTosetRelAXBXARBABxX|¬BRx¬xRA=BxX|¬xRA
26 simpr RTosetRelAXBXARBABxX|¬BRx¬xRA=xX|¬BRx¬xRA=
27 eleq2 m=xX|¬BRxAmAxX|¬BRx
28 ineq1 m=xX|¬BRxmn=xX|¬BRxn
29 28 eqeq1d m=xX|¬BRxmn=xX|¬BRxn=
30 27 29 3anbi13d m=xX|¬BRxAmBnmn=AxX|¬BRxBnxX|¬BRxn=
31 eleq2 n=xX|¬xRABnBxX|¬xRA
32 ineq2 n=xX|¬xRAxX|¬BRxn=xX|¬BRxxX|¬xRA
33 inrab xX|¬BRxxX|¬xRA=xX|¬BRx¬xRA
34 32 33 eqtrdi n=xX|¬xRAxX|¬BRxn=xX|¬BRx¬xRA
35 34 eqeq1d n=xX|¬xRAxX|¬BRxn=xX|¬BRx¬xRA=
36 31 35 3anbi23d n=xX|¬xRAAxX|¬BRxBnxX|¬BRxn=AxX|¬BRxBxX|¬xRAxX|¬BRx¬xRA=
37 30 36 rspc2ev xX|¬BRxordTopRxX|¬xRAordTopRAxX|¬BRxBxX|¬xRAxX|¬BRx¬xRA=mordTopRnordTopRAmBnmn=
38 5 8 22 25 26 37 syl113anc RTosetRelAXBXARBABxX|¬BRx¬xRA=mordTopRnordTopRAmBnmn=
39 38 ex RTosetRelAXBXARBABxX|¬BRx¬xRA=mordTopRnordTopRAmBnmn=
40 rabn0 xX|¬BRx¬xRAxX¬BRx¬xRA
41 simpll1 RTosetRelAXBXARBABxX¬BRx¬xRARTosetRel
42 simprl RTosetRelAXBXARBABxX¬BRx¬xRAxX
43 1 ordtopn2 RTosetRelxXyX|¬xRyordTopR
44 41 42 43 syl2anc RTosetRelAXBXARBABxX¬BRx¬xRAyX|¬xRyordTopR
45 1 ordtopn1 RTosetRelxXyX|¬yRxordTopR
46 41 42 45 syl2anc RTosetRelAXBXARBABxX¬BRx¬xRAyX|¬yRxordTopR
47 breq2 y=AxRyxRA
48 47 notbid y=A¬xRy¬xRA
49 simpll2 RTosetRelAXBXARBABxX¬BRx¬xRAAX
50 simprrr RTosetRelAXBXARBABxX¬BRx¬xRA¬xRA
51 48 49 50 elrabd RTosetRelAXBXARBABxX¬BRx¬xRAAyX|¬xRy
52 breq1 y=ByRxBRx
53 52 notbid y=B¬yRx¬BRx
54 simpll3 RTosetRelAXBXARBABxX¬BRx¬xRABX
55 simprrl RTosetRelAXBXARBABxX¬BRx¬xRA¬BRx
56 53 54 55 elrabd RTosetRelAXBXARBABxX¬BRx¬xRAByX|¬yRx
57 41 42 jca RTosetRelAXBXARBABxX¬BRx¬xRARTosetRelxX
58 1 tsrlin RTosetRelxXyXxRyyRx
59 58 3expa RTosetRelxXyXxRyyRx
60 57 59 sylan RTosetRelAXBXARBABxX¬BRx¬xRAyXxRyyRx
61 oran xRyyRx¬¬xRy¬yRx
62 60 61 sylib RTosetRelAXBXARBABxX¬BRx¬xRAyX¬¬xRy¬yRx
63 62 ralrimiva RTosetRelAXBXARBABxX¬BRx¬xRAyX¬¬xRy¬yRx
64 rabeq0 yX|¬xRy¬yRx=yX¬¬xRy¬yRx
65 63 64 sylibr RTosetRelAXBXARBABxX¬BRx¬xRAyX|¬xRy¬yRx=
66 eleq2 m=yX|¬xRyAmAyX|¬xRy
67 ineq1 m=yX|¬xRymn=yX|¬xRyn
68 67 eqeq1d m=yX|¬xRymn=yX|¬xRyn=
69 66 68 3anbi13d m=yX|¬xRyAmBnmn=AyX|¬xRyBnyX|¬xRyn=
70 eleq2 n=yX|¬yRxBnByX|¬yRx
71 ineq2 n=yX|¬yRxyX|¬xRyn=yX|¬xRyyX|¬yRx
72 inrab yX|¬xRyyX|¬yRx=yX|¬xRy¬yRx
73 71 72 eqtrdi n=yX|¬yRxyX|¬xRyn=yX|¬xRy¬yRx
74 73 eqeq1d n=yX|¬yRxyX|¬xRyn=yX|¬xRy¬yRx=
75 70 74 3anbi23d n=yX|¬yRxAyX|¬xRyBnyX|¬xRyn=AyX|¬xRyByX|¬yRxyX|¬xRy¬yRx=
76 69 75 rspc2ev yX|¬xRyordTopRyX|¬yRxordTopRAyX|¬xRyByX|¬yRxyX|¬xRy¬yRx=mordTopRnordTopRAmBnmn=
77 44 46 51 56 65 76 syl113anc RTosetRelAXBXARBABxX¬BRx¬xRAmordTopRnordTopRAmBnmn=
78 77 rexlimdvaa RTosetRelAXBXARBABxX¬BRx¬xRAmordTopRnordTopRAmBnmn=
79 40 78 biimtrid RTosetRelAXBXARBABxX|¬BRx¬xRAmordTopRnordTopRAmBnmn=
80 39 79 pm2.61dne RTosetRelAXBXARBABmordTopRnordTopRAmBnmn=
81 80 exp32 RTosetRelAXBXARBABmordTopRnordTopRAmBnmn=