Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
ordthauslem
Next ⟩
ordthaus
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordthauslem
Description:
Lemma for
ordthaus
.
(Contributed by
Mario Carneiro
, 13-Sep-2015)
Ref
Expression
Hypothesis
ordthauslem.1
⊢
X
=
dom
R
Assertion
ordthauslem
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
→
A
R
B
→
A
≠
B
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
Proof
Step
Hyp
Ref
Expression
1
ordthauslem.1
⊢
X
=
dom
R
2
simpll1
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
R
∈
TosetRel
3
simpll3
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
B
∈
X
4
1
ordtopn2
⊢
R
∈
TosetRel
∧
B
∈
X
→
x
∈
X
|
¬
B
R
x
∈
ordTop
R
5
2
3
4
syl2anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
x
∈
X
|
¬
B
R
x
∈
ordTop
R
6
simpll2
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
A
∈
X
7
1
ordtopn1
⊢
R
∈
TosetRel
∧
A
∈
X
→
x
∈
X
|
¬
x
R
A
∈
ordTop
R
8
2
6
7
syl2anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
x
∈
X
|
¬
x
R
A
∈
ordTop
R
9
breq2
⊢
x
=
A
→
B
R
x
↔
B
R
A
10
9
notbid
⊢
x
=
A
→
¬
B
R
x
↔
¬
B
R
A
11
simprr
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
A
≠
B
12
simpl1
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
R
∈
TosetRel
13
tsrps
⊢
R
∈
TosetRel
→
R
∈
PosetRel
14
12
13
syl
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
R
∈
PosetRel
15
simprl
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
A
R
B
16
psasym
⊢
R
∈
PosetRel
∧
A
R
B
∧
B
R
A
→
A
=
B
17
16
3expia
⊢
R
∈
PosetRel
∧
A
R
B
→
B
R
A
→
A
=
B
18
14
15
17
syl2anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
B
R
A
→
A
=
B
19
18
necon3ad
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
A
≠
B
→
¬
B
R
A
20
11
19
mpd
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
¬
B
R
A
21
20
adantr
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
¬
B
R
A
22
10
6
21
elrabd
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
A
∈
x
∈
X
|
¬
B
R
x
23
breq1
⊢
x
=
B
→
x
R
A
↔
B
R
A
24
23
notbid
⊢
x
=
B
→
¬
x
R
A
↔
¬
B
R
A
25
24
3
21
elrabd
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
B
∈
x
∈
X
|
¬
x
R
A
26
simpr
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
27
eleq2
⊢
m
=
x
∈
X
|
¬
B
R
x
→
A
∈
m
↔
A
∈
x
∈
X
|
¬
B
R
x
28
ineq1
⊢
m
=
x
∈
X
|
¬
B
R
x
→
m
∩
n
=
x
∈
X
|
¬
B
R
x
∩
n
29
28
eqeq1d
⊢
m
=
x
∈
X
|
¬
B
R
x
→
m
∩
n
=
∅
↔
x
∈
X
|
¬
B
R
x
∩
n
=
∅
30
27
29
3anbi13d
⊢
m
=
x
∈
X
|
¬
B
R
x
→
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
↔
A
∈
x
∈
X
|
¬
B
R
x
∧
B
∈
n
∧
x
∈
X
|
¬
B
R
x
∩
n
=
∅
31
eleq2
⊢
n
=
x
∈
X
|
¬
x
R
A
→
B
∈
n
↔
B
∈
x
∈
X
|
¬
x
R
A
32
ineq2
⊢
n
=
x
∈
X
|
¬
x
R
A
→
x
∈
X
|
¬
B
R
x
∩
n
=
x
∈
X
|
¬
B
R
x
∩
x
∈
X
|
¬
x
R
A
33
inrab
⊢
x
∈
X
|
¬
B
R
x
∩
x
∈
X
|
¬
x
R
A
=
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
34
32
33
eqtrdi
⊢
n
=
x
∈
X
|
¬
x
R
A
→
x
∈
X
|
¬
B
R
x
∩
n
=
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
35
34
eqeq1d
⊢
n
=
x
∈
X
|
¬
x
R
A
→
x
∈
X
|
¬
B
R
x
∩
n
=
∅
↔
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
36
31
35
3anbi23d
⊢
n
=
x
∈
X
|
¬
x
R
A
→
A
∈
x
∈
X
|
¬
B
R
x
∧
B
∈
n
∧
x
∈
X
|
¬
B
R
x
∩
n
=
∅
↔
A
∈
x
∈
X
|
¬
B
R
x
∧
B
∈
x
∈
X
|
¬
x
R
A
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
37
30
36
rspc2ev
⊢
x
∈
X
|
¬
B
R
x
∈
ordTop
R
∧
x
∈
X
|
¬
x
R
A
∈
ordTop
R
∧
A
∈
x
∈
X
|
¬
B
R
x
∧
B
∈
x
∈
X
|
¬
x
R
A
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
38
5
8
22
25
26
37
syl113anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
39
38
ex
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
=
∅
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
40
rabn0
⊢
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
≠
∅
↔
∃
x
∈
X
¬
B
R
x
∧
¬
x
R
A
41
simpll1
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
R
∈
TosetRel
42
simprl
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
x
∈
X
43
1
ordtopn2
⊢
R
∈
TosetRel
∧
x
∈
X
→
y
∈
X
|
¬
x
R
y
∈
ordTop
R
44
41
42
43
syl2anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
y
∈
X
|
¬
x
R
y
∈
ordTop
R
45
1
ordtopn1
⊢
R
∈
TosetRel
∧
x
∈
X
→
y
∈
X
|
¬
y
R
x
∈
ordTop
R
46
41
42
45
syl2anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
y
∈
X
|
¬
y
R
x
∈
ordTop
R
47
breq2
⊢
y
=
A
→
x
R
y
↔
x
R
A
48
47
notbid
⊢
y
=
A
→
¬
x
R
y
↔
¬
x
R
A
49
simpll2
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
A
∈
X
50
simprrr
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
¬
x
R
A
51
48
49
50
elrabd
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
A
∈
y
∈
X
|
¬
x
R
y
52
breq1
⊢
y
=
B
→
y
R
x
↔
B
R
x
53
52
notbid
⊢
y
=
B
→
¬
y
R
x
↔
¬
B
R
x
54
simpll3
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
B
∈
X
55
simprrl
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
¬
B
R
x
56
53
54
55
elrabd
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
B
∈
y
∈
X
|
¬
y
R
x
57
41
42
jca
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
R
∈
TosetRel
∧
x
∈
X
58
1
tsrlin
⊢
R
∈
TosetRel
∧
x
∈
X
∧
y
∈
X
→
x
R
y
∨
y
R
x
59
58
3expa
⊢
R
∈
TosetRel
∧
x
∈
X
∧
y
∈
X
→
x
R
y
∨
y
R
x
60
57
59
sylan
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
∧
y
∈
X
→
x
R
y
∨
y
R
x
61
oran
⊢
x
R
y
∨
y
R
x
↔
¬
¬
x
R
y
∧
¬
y
R
x
62
60
61
sylib
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
∧
y
∈
X
→
¬
¬
x
R
y
∧
¬
y
R
x
63
62
ralrimiva
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
∀
y
∈
X
¬
¬
x
R
y
∧
¬
y
R
x
64
rabeq0
⊢
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
=
∅
↔
∀
y
∈
X
¬
¬
x
R
y
∧
¬
y
R
x
65
63
64
sylibr
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
=
∅
66
eleq2
⊢
m
=
y
∈
X
|
¬
x
R
y
→
A
∈
m
↔
A
∈
y
∈
X
|
¬
x
R
y
67
ineq1
⊢
m
=
y
∈
X
|
¬
x
R
y
→
m
∩
n
=
y
∈
X
|
¬
x
R
y
∩
n
68
67
eqeq1d
⊢
m
=
y
∈
X
|
¬
x
R
y
→
m
∩
n
=
∅
↔
y
∈
X
|
¬
x
R
y
∩
n
=
∅
69
66
68
3anbi13d
⊢
m
=
y
∈
X
|
¬
x
R
y
→
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
↔
A
∈
y
∈
X
|
¬
x
R
y
∧
B
∈
n
∧
y
∈
X
|
¬
x
R
y
∩
n
=
∅
70
eleq2
⊢
n
=
y
∈
X
|
¬
y
R
x
→
B
∈
n
↔
B
∈
y
∈
X
|
¬
y
R
x
71
ineq2
⊢
n
=
y
∈
X
|
¬
y
R
x
→
y
∈
X
|
¬
x
R
y
∩
n
=
y
∈
X
|
¬
x
R
y
∩
y
∈
X
|
¬
y
R
x
72
inrab
⊢
y
∈
X
|
¬
x
R
y
∩
y
∈
X
|
¬
y
R
x
=
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
73
71
72
eqtrdi
⊢
n
=
y
∈
X
|
¬
y
R
x
→
y
∈
X
|
¬
x
R
y
∩
n
=
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
74
73
eqeq1d
⊢
n
=
y
∈
X
|
¬
y
R
x
→
y
∈
X
|
¬
x
R
y
∩
n
=
∅
↔
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
=
∅
75
70
74
3anbi23d
⊢
n
=
y
∈
X
|
¬
y
R
x
→
A
∈
y
∈
X
|
¬
x
R
y
∧
B
∈
n
∧
y
∈
X
|
¬
x
R
y
∩
n
=
∅
↔
A
∈
y
∈
X
|
¬
x
R
y
∧
B
∈
y
∈
X
|
¬
y
R
x
∧
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
=
∅
76
69
75
rspc2ev
⊢
y
∈
X
|
¬
x
R
y
∈
ordTop
R
∧
y
∈
X
|
¬
y
R
x
∈
ordTop
R
∧
A
∈
y
∈
X
|
¬
x
R
y
∧
B
∈
y
∈
X
|
¬
y
R
x
∧
y
∈
X
|
¬
x
R
y
∧
¬
y
R
x
=
∅
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
77
44
46
51
56
65
76
syl113anc
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
∧
x
∈
X
∧
¬
B
R
x
∧
¬
x
R
A
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
78
77
rexlimdvaa
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
∃
x
∈
X
¬
B
R
x
∧
¬
x
R
A
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
79
40
78
biimtrid
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
x
∈
X
|
¬
B
R
x
∧
¬
x
R
A
≠
∅
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
80
39
79
pm2.61dne
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
∧
A
≠
B
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅
81
80
exp32
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
→
A
R
B
→
A
≠
B
→
∃
m
∈
ordTop
R
∃
n
∈
ordTop
R
A
∈
m
∧
B
∈
n
∧
m
∩
n
=
∅