Metamath Proof Explorer


Theorem outsidele

Description: Relate OutsideOf to Seg<_ . Theorem 6.13 of Schwabhauser p. 45. (Contributed by Scott Fenton, 24-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion outsidele N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B P A Seg P B A Btwn P B

Proof

Step Hyp Ref Expression
1 simpl N P 𝔼 N A 𝔼 N B 𝔼 N N
2 simpr1 N P 𝔼 N A 𝔼 N B 𝔼 N P 𝔼 N
3 simpr2 N P 𝔼 N A 𝔼 N B 𝔼 N A 𝔼 N
4 simpr3 N P 𝔼 N A 𝔼 N B 𝔼 N B 𝔼 N
5 brsegle2 N P 𝔼 N A 𝔼 N P 𝔼 N B 𝔼 N P A Seg P B y 𝔼 N A Btwn P y P y Cgr P B
6 1 2 3 2 4 5 syl122anc N P 𝔼 N A 𝔼 N B 𝔼 N P A Seg P B y 𝔼 N A Btwn P y P y Cgr P B
7 6 adantr N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B P A Seg P B y 𝔼 N A Btwn P y P y Cgr P B
8 simprl N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf A B
9 outsideofcom N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B P OutsideOf B A
10 9 ad2antrr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf A B P OutsideOf B A
11 8 10 mpbid N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf B A
12 simpll N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N N
13 simplr1 N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P 𝔼 N
14 simplr3 N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N B 𝔼 N
15 12 13 14 cgrrflxd N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P B Cgr P B
16 15 adantr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P B Cgr P B
17 11 16 jca N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf B A P B Cgr P B
18 simprrl N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B A Btwn P y
19 simpr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N y 𝔼 N
20 simplr2 N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N A 𝔼 N
21 btwncolinear1 N P 𝔼 N y 𝔼 N A 𝔼 N A Btwn P y P Colinear y A
22 12 13 19 20 21 syl13anc N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N A Btwn P y P Colinear y A
23 22 adantr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B A Btwn P y P Colinear y A
24 18 23 mpd N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Colinear y A
25 outsidene1 N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B A P
26 25 ad2antrr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf A B A P
27 8 26 mpd N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B A P
28 27 neneqd N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B ¬ A = P
29 df-3an P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A
30 simpr2l N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A A Btwn P y
31 12 20 13 19 30 btwncomand N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A A Btwn y P
32 simpr3 N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A P Btwn y A
33 btwnswapid2 N A 𝔼 N y 𝔼 N P 𝔼 N A Btwn y P P Btwn y A A = P
34 12 20 19 13 33 syl13anc N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N A Btwn y P P Btwn y A A = P
35 34 adantr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A A Btwn y P P Btwn y A A = P
36 31 32 35 mp2and N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A A = P
37 29 36 sylan2br N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A A = P
38 37 expr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P Btwn y A A = P
39 28 38 mtod N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B ¬ P Btwn y A
40 broutsideof P OutsideOf y A P Colinear y A ¬ P Btwn y A
41 24 39 40 sylanbrc N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf y A
42 simprrr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P y Cgr P B
43 41 42 jca N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf y A P y Cgr P B
44 outsideofeq N P 𝔼 N A 𝔼 N P 𝔼 N B 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf B A P B Cgr P B P OutsideOf y A P y Cgr P B B = y
45 12 13 20 13 14 14 19 44 syl133anc N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf B A P B Cgr P B P OutsideOf y A P y Cgr P B B = y
46 45 adantr N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B P OutsideOf B A P B Cgr P B P OutsideOf y A P y Cgr P B B = y
47 17 43 46 mp2and N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B B = y
48 opeq2 B = y P B = P y
49 48 breq2d B = y A Btwn P B A Btwn P y
50 18 49 syl5ibrcom N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B B = y A Btwn P B
51 47 50 mpd N P 𝔼 N A 𝔼 N B 𝔼 N y 𝔼 N P OutsideOf A B A Btwn P y P y Cgr P B A Btwn P B
52 51 an4s N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B y 𝔼 N A Btwn P y P y Cgr P B A Btwn P B
53 52 rexlimdvaa N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B y 𝔼 N A Btwn P y P y Cgr P B A Btwn P B
54 7 53 sylbid N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B P A Seg P B A Btwn P B
55 btwnsegle N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B P A Seg P B
56 55 adantr N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B A Btwn P B P A Seg P B
57 54 56 impbid N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B P A Seg P B A Btwn P B
58 57 ex N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B P A Seg P B A Btwn P B