Metamath Proof Explorer


Theorem outsidele

Description: Relate OutsideOf to Seg<_ . Theorem 6.13 of Schwabhauser p. 45. (Contributed by Scott Fenton, 24-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion outsidele NP𝔼NA𝔼NB𝔼NPOutsideOfABPASegPBABtwnPB

Proof

Step Hyp Ref Expression
1 simpl NP𝔼NA𝔼NB𝔼NN
2 simpr1 NP𝔼NA𝔼NB𝔼NP𝔼N
3 simpr2 NP𝔼NA𝔼NB𝔼NA𝔼N
4 simpr3 NP𝔼NA𝔼NB𝔼NB𝔼N
5 brsegle2 NP𝔼NA𝔼NP𝔼NB𝔼NPASegPBy𝔼NABtwnPyPyCgrPB
6 1 2 3 2 4 5 syl122anc NP𝔼NA𝔼NB𝔼NPASegPBy𝔼NABtwnPyPyCgrPB
7 6 adantr NP𝔼NA𝔼NB𝔼NPOutsideOfABPASegPBy𝔼NABtwnPyPyCgrPB
8 simprl NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfAB
9 outsideofcom NP𝔼NA𝔼NB𝔼NPOutsideOfABPOutsideOfBA
10 9 ad2antrr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfABPOutsideOfBA
11 8 10 mpbid NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfBA
12 simpll NP𝔼NA𝔼NB𝔼Ny𝔼NN
13 simplr1 NP𝔼NA𝔼NB𝔼Ny𝔼NP𝔼N
14 simplr3 NP𝔼NA𝔼NB𝔼Ny𝔼NB𝔼N
15 12 13 14 cgrrflxd NP𝔼NA𝔼NB𝔼Ny𝔼NPBCgrPB
16 15 adantr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBCgrPB
17 11 16 jca NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfBAPBCgrPB
18 simprrl NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBABtwnPy
19 simpr NP𝔼NA𝔼NB𝔼Ny𝔼Ny𝔼N
20 simplr2 NP𝔼NA𝔼NB𝔼Ny𝔼NA𝔼N
21 btwncolinear1 NP𝔼Ny𝔼NA𝔼NABtwnPyPColinearyA
22 12 13 19 20 21 syl13anc NP𝔼NA𝔼NB𝔼Ny𝔼NABtwnPyPColinearyA
23 22 adantr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBABtwnPyPColinearyA
24 18 23 mpd NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPColinearyA
25 outsidene1 NP𝔼NA𝔼NB𝔼NPOutsideOfABAP
26 25 ad2antrr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfABAP
27 8 26 mpd NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBAP
28 27 neneqd NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPB¬A=P
29 df-3an POutsideOfABABtwnPyPyCgrPBPBtwnyAPOutsideOfABABtwnPyPyCgrPBPBtwnyA
30 simpr2l NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAABtwnPy
31 12 20 13 19 30 btwncomand NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAABtwnyP
32 simpr3 NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAPBtwnyA
33 btwnswapid2 NA𝔼Ny𝔼NP𝔼NABtwnyPPBtwnyAA=P
34 12 20 19 13 33 syl13anc NP𝔼NA𝔼NB𝔼Ny𝔼NABtwnyPPBtwnyAA=P
35 34 adantr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAABtwnyPPBtwnyAA=P
36 31 32 35 mp2and NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAA=P
37 29 36 sylan2br NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAA=P
38 37 expr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPBtwnyAA=P
39 28 38 mtod NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPB¬PBtwnyA
40 broutsideof POutsideOfyAPColinearyA¬PBtwnyA
41 24 39 40 sylanbrc NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfyA
42 simprrr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPyCgrPB
43 41 42 jca NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfyAPyCgrPB
44 outsideofeq NP𝔼NA𝔼NP𝔼NB𝔼NB𝔼Ny𝔼NPOutsideOfBAPBCgrPBPOutsideOfyAPyCgrPBB=y
45 12 13 20 13 14 14 19 44 syl133anc NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfBAPBCgrPBPOutsideOfyAPyCgrPBB=y
46 45 adantr NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBPOutsideOfBAPBCgrPBPOutsideOfyAPyCgrPBB=y
47 17 43 46 mp2and NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBB=y
48 opeq2 B=yPB=Py
49 48 breq2d B=yABtwnPBABtwnPy
50 18 49 syl5ibrcom NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBB=yABtwnPB
51 47 50 mpd NP𝔼NA𝔼NB𝔼Ny𝔼NPOutsideOfABABtwnPyPyCgrPBABtwnPB
52 51 an4s NP𝔼NA𝔼NB𝔼NPOutsideOfABy𝔼NABtwnPyPyCgrPBABtwnPB
53 52 rexlimdvaa NP𝔼NA𝔼NB𝔼NPOutsideOfABy𝔼NABtwnPyPyCgrPBABtwnPB
54 7 53 sylbid NP𝔼NA𝔼NB𝔼NPOutsideOfABPASegPBABtwnPB
55 btwnsegle NP𝔼NA𝔼NB𝔼NABtwnPBPASegPB
56 55 adantr NP𝔼NA𝔼NB𝔼NPOutsideOfABABtwnPBPASegPB
57 54 56 impbid NP𝔼NA𝔼NB𝔼NPOutsideOfABPASegPBABtwnPB
58 57 ex NP𝔼NA𝔼NB𝔼NPOutsideOfABPASegPBABtwnPB