Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pczpre.1 | |
|
Assertion | pczpre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pczpre.1 | |
|
2 | zq | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | pcval | |
6 | 2 5 | sylanr1 | |
7 | simprl | |
|
8 | 7 | zcnd | |
9 | 8 | div1d | |
10 | 9 | eqcomd | |
11 | prmuz2 | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | pcpre1 | |
16 | 11 12 15 | sylancl | |
17 | 16 | adantr | |
18 | 17 | oveq2d | |
19 | eqid | |
|
20 | 19 1 | pcprecl | |
21 | 11 20 | sylan | |
22 | 21 | simpld | |
23 | 22 | nn0cnd | |
24 | 23 | subid1d | |
25 | 18 24 | eqtr2d | |
26 | 1nn | |
|
27 | oveq1 | |
|
28 | 27 | eqeq2d | |
29 | breq2 | |
|
30 | 29 | rabbidv | |
31 | 30 | supeq1d | |
32 | 31 1 | eqtr4di | |
33 | 32 | oveq1d | |
34 | 33 | eqeq2d | |
35 | 28 34 | anbi12d | |
36 | oveq2 | |
|
37 | 36 | eqeq2d | |
38 | breq2 | |
|
39 | 38 | rabbidv | |
40 | 39 | supeq1d | |
41 | 40 | oveq2d | |
42 | 41 | eqeq2d | |
43 | 37 42 | anbi12d | |
44 | 35 43 | rspc2ev | |
45 | 26 44 | mp3an2 | |
46 | 7 10 25 45 | syl12anc | |
47 | ltso | |
|
48 | 47 | supex | |
49 | 1 48 | eqeltri | |
50 | 3 4 | pceu | |
51 | 2 50 | sylanr1 | |
52 | eqeq1 | |
|
53 | 52 | anbi2d | |
54 | 53 | 2rexbidv | |
55 | 54 | iota2 | |
56 | 49 51 55 | sylancr | |
57 | 46 56 | mpbid | |
58 | 6 57 | eqtrd | |