Metamath Proof Explorer


Theorem pczpre

Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis pczpre.1 S=supn0|PnN<
Assertion pczpre PNN0PpCntN=S

Proof

Step Hyp Ref Expression
1 pczpre.1 S=supn0|PnN<
2 zq NN
3 eqid supn0|Pnx<=supn0|Pnx<
4 eqid supn0|Pny<=supn0|Pny<
5 3 4 pcval PNN0PpCntN=ιz|xyN=xyz=supn0|Pnx<supn0|Pny<
6 2 5 sylanr1 PNN0PpCntN=ιz|xyN=xyz=supn0|Pnx<supn0|Pny<
7 simprl PNN0N
8 7 zcnd PNN0N
9 8 div1d PNN0N1=N
10 9 eqcomd PNN0N=N1
11 prmuz2 PP2
12 eqid 1=1
13 eqid n0|Pn1=n0|Pn1
14 eqid supn0|Pn1<=supn0|Pn1<
15 13 14 pcpre1 P21=1supn0|Pn1<=0
16 11 12 15 sylancl Psupn0|Pn1<=0
17 16 adantr PNN0supn0|Pn1<=0
18 17 oveq2d PNN0Ssupn0|Pn1<=S0
19 eqid n0|PnN=n0|PnN
20 19 1 pcprecl P2NN0S0PSN
21 11 20 sylan PNN0S0PSN
22 21 simpld PNN0S0
23 22 nn0cnd PNN0S
24 23 subid1d PNN0S0=S
25 18 24 eqtr2d PNN0S=Ssupn0|Pn1<
26 1nn 1
27 oveq1 x=Nxy=Ny
28 27 eqeq2d x=NN=xyN=Ny
29 breq2 x=NPnxPnN
30 29 rabbidv x=Nn0|Pnx=n0|PnN
31 30 supeq1d x=Nsupn0|Pnx<=supn0|PnN<
32 31 1 eqtr4di x=Nsupn0|Pnx<=S
33 32 oveq1d x=Nsupn0|Pnx<supn0|Pny<=Ssupn0|Pny<
34 33 eqeq2d x=NS=supn0|Pnx<supn0|Pny<S=Ssupn0|Pny<
35 28 34 anbi12d x=NN=xyS=supn0|Pnx<supn0|Pny<N=NyS=Ssupn0|Pny<
36 oveq2 y=1Ny=N1
37 36 eqeq2d y=1N=NyN=N1
38 breq2 y=1PnyPn1
39 38 rabbidv y=1n0|Pny=n0|Pn1
40 39 supeq1d y=1supn0|Pny<=supn0|Pn1<
41 40 oveq2d y=1Ssupn0|Pny<=Ssupn0|Pn1<
42 41 eqeq2d y=1S=Ssupn0|Pny<S=Ssupn0|Pn1<
43 37 42 anbi12d y=1N=NyS=Ssupn0|Pny<N=N1S=Ssupn0|Pn1<
44 35 43 rspc2ev N1N=N1S=Ssupn0|Pn1<xyN=xyS=supn0|Pnx<supn0|Pny<
45 26 44 mp3an2 NN=N1S=Ssupn0|Pn1<xyN=xyS=supn0|Pnx<supn0|Pny<
46 7 10 25 45 syl12anc PNN0xyN=xyS=supn0|Pnx<supn0|Pny<
47 ltso <Or
48 47 supex supn0|PnN<V
49 1 48 eqeltri SV
50 3 4 pceu PNN0∃!zxyN=xyz=supn0|Pnx<supn0|Pny<
51 2 50 sylanr1 PNN0∃!zxyN=xyz=supn0|Pnx<supn0|Pny<
52 eqeq1 z=Sz=supn0|Pnx<supn0|Pny<S=supn0|Pnx<supn0|Pny<
53 52 anbi2d z=SN=xyz=supn0|Pnx<supn0|Pny<N=xyS=supn0|Pnx<supn0|Pny<
54 53 2rexbidv z=SxyN=xyz=supn0|Pnx<supn0|Pny<xyN=xyS=supn0|Pnx<supn0|Pny<
55 54 iota2 SV∃!zxyN=xyz=supn0|Pnx<supn0|Pny<xyN=xyS=supn0|Pnx<supn0|Pny<ιz|xyN=xyz=supn0|Pnx<supn0|Pny<=S
56 49 51 55 sylancr PNN0xyN=xyS=supn0|Pnx<supn0|Pny<ιz|xyN=xyz=supn0|Pnx<supn0|Pny<=S
57 46 56 mpbid PNN0ιz|xyN=xyz=supn0|Pnx<supn0|Pny<=S
58 6 57 eqtrd PNN0PpCntN=S