Metamath Proof Explorer


Theorem phpOLD

Description: Obsolete version of php as of 18-Nov-2024. (Contributed by NM, 29-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion phpOLD AωBA¬AB

Proof

Step Hyp Ref Expression
1 0ss B
2 sspsstr BBAA
3 1 2 mpan BAA
4 0pss AA
5 df-ne A¬A=
6 4 5 bitri A¬A=
7 3 6 sylib BA¬A=
8 nn0suc AωA=xωA=sucx
9 8 orcanai Aω¬A=xωA=sucx
10 7 9 sylan2 AωBAxωA=sucx
11 pssnel Bsucxyysucx¬yB
12 pssss BsucxBsucx
13 ssdif BsucxBysucxy
14 disjsn By=¬yB
15 disj3 By=B=By
16 14 15 bitr3i ¬yBB=By
17 sseq1 B=ByBsucxyBysucxy
18 16 17 sylbi ¬yBBsucxyBysucxy
19 13 18 imbitrrid ¬yBBsucxBsucxy
20 vex xV
21 20 sucex sucxV
22 21 difexi sucxyV
23 ssdomg sucxyVBsucxyBsucxy
24 22 23 ax-mp BsucxyBsucxy
25 12 19 24 syl56 ¬yBBsucxBsucxy
26 25 imp ¬yBBsucxBsucxy
27 vex yV
28 20 27 phplem3OLD xωysucxxsucxy
29 28 ensymd xωysucxsucxyx
30 domentr BsucxysucxyxBx
31 26 29 30 syl2an ¬yBBsucxxωysucxBx
32 31 exp43 ¬yBBsucxxωysucxBx
33 32 com4r ysucx¬yBBsucxxωBx
34 33 imp ysucx¬yBBsucxxωBx
35 34 exlimiv yysucx¬yBBsucxxωBx
36 11 35 mpcom BsucxxωBx
37 endomtr sucxBBxsucxx
38 sssucid xsucx
39 ssdomg sucxVxsucxxsucx
40 21 38 39 mp2 xsucx
41 sbth sucxxxsucxsucxx
42 37 40 41 sylancl sucxBBxsucxx
43 42 expcom BxsucxBsucxx
44 peano2b xωsucxω
45 nnord sucxωOrdsucx
46 44 45 sylbi xωOrdsucx
47 20 sucid xsucx
48 nordeq Ordsucxxsucxsucxx
49 46 47 48 sylancl xωsucxx
50 nneneqOLD sucxωxωsucxxsucx=x
51 44 50 sylanb xωxωsucxxsucx=x
52 51 anidms xωsucxxsucx=x
53 52 necon3bbid xω¬sucxxsucxx
54 49 53 mpbird xω¬sucxx
55 43 54 nsyli Bxxω¬sucxB
56 36 55 syli Bsucxxω¬sucxB
57 56 com12 xωBsucx¬sucxB
58 psseq2 A=sucxBABsucx
59 breq1 A=sucxABsucxB
60 59 notbid A=sucx¬AB¬sucxB
61 58 60 imbi12d A=sucxBA¬ABBsucx¬sucxB
62 57 61 syl5ibrcom xωA=sucxBA¬AB
63 62 rexlimiv xωA=sucxBA¬AB
64 10 63 syl AωBABA¬AB
65 64 ex AωBABA¬AB
66 65 pm2.43d AωBA¬AB
67 66 imp AωBA¬AB