Metamath Proof Explorer


Theorem pjf2

Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjf.k K=projW
pjf.v V=BaseW
Assertion pjf2 WPreHilTdomKKT:VT

Proof

Step Hyp Ref Expression
1 pjf.k K=projW
2 pjf.v V=BaseW
3 eqid +W=+W
4 eqid LSSumW=LSSumW
5 eqid 0W=0W
6 eqid CntzW=CntzW
7 phllmod WPreHilWLMod
8 7 adantr WPreHilTdomKWLMod
9 eqid LSubSpW=LSubSpW
10 9 lsssssubg WLModLSubSpWSubGrpW
11 8 10 syl WPreHilTdomKLSubSpWSubGrpW
12 eqid ocvW=ocvW
13 2 9 12 4 1 pjdm2 WPreHilTdomKTLSubSpWTLSSumWocvWT=V
14 13 simprbda WPreHilTdomKTLSubSpW
15 11 14 sseldd WPreHilTdomKTSubGrpW
16 2 9 lssss TLSubSpWTV
17 14 16 syl WPreHilTdomKTV
18 2 12 9 ocvlss WPreHilTVocvWTLSubSpW
19 17 18 syldan WPreHilTdomKocvWTLSubSpW
20 11 19 sseldd WPreHilTdomKocvWTSubGrpW
21 12 9 5 ocvin WPreHilTLSubSpWTocvWT=0W
22 14 21 syldan WPreHilTdomKTocvWT=0W
23 lmodabl WLModWAbel
24 8 23 syl WPreHilTdomKWAbel
25 6 24 15 20 ablcntzd WPreHilTdomKTCntzWocvWT
26 eqid proj1W=proj1W
27 3 4 5 6 15 20 22 25 26 pj1f WPreHilTdomKTproj1WocvWT:TLSSumWocvWTT
28 12 26 1 pjval TdomKKT=Tproj1WocvWT
29 28 adantl WPreHilTdomKKT=Tproj1WocvWT
30 29 eqcomd WPreHilTdomKTproj1WocvWT=KT
31 13 simplbda WPreHilTdomKTLSSumWocvWT=V
32 30 31 feq12d WPreHilTdomKTproj1WocvWT:TLSSumWocvWTTKT:VT
33 27 32 mpbid WPreHilTdomKKT:VT