Description: Equality with a projection. This version of pjeq does not assume the Axiom of Choice via pjhth . (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjpreeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh | |
|
2 | shocsh | |
|
3 | shsel | |
|
4 | 1 2 3 | syl2anc2 | |
5 | 4 | biimpa | |
6 | 1 2 | syl | |
7 | ocin | |
|
8 | 1 7 | syl | |
9 | pjhthmo | |
|
10 | 1 6 8 9 | syl3anc | |
11 | 10 | adantr | |
12 | reu5 | |
|
13 | df-rmo | |
|
14 | 13 | anbi2i | |
15 | 12 14 | bitri | |
16 | 5 11 15 | sylanbrc | |
17 | riotacl | |
|
18 | 16 17 | syl | |
19 | eleq1 | |
|
20 | 18 19 | syl5ibcom | |
21 | 20 | pm4.71rd | |
22 | shsss | |
|
23 | 1 2 22 | syl2anc2 | |
24 | 23 | sselda | |
25 | pjhval | |
|
26 | 24 25 | syldan | |
27 | 26 | eqeq1d | |
28 | id | |
|
29 | oveq1 | |
|
30 | 29 | eqeq2d | |
31 | 30 | rexbidv | |
32 | 31 | riota2 | |
33 | 28 16 32 | syl2anr | |
34 | 33 | pm5.32da | |
35 | 21 27 34 | 3bitr4d | |