Metamath Proof Explorer


Theorem pjpreeq

Description: Equality with a projection. This version of pjeq does not assume the Axiom of Choice via pjhth . (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjpreeq HCAH+HprojHA=BBHxHA=B+x

Proof

Step Hyp Ref Expression
1 chsh HCHS
2 shocsh HSHS
3 shsel HSHSAH+HyHxHA=y+x
4 1 2 3 syl2anc2 HCAH+HyHxHA=y+x
5 4 biimpa HCAH+HyHxHA=y+x
6 1 2 syl HCHS
7 ocin HSHH=0
8 1 7 syl HCHH=0
9 pjhthmo HSHSHH=0*yyHxHA=y+x
10 1 6 8 9 syl3anc HC*yyHxHA=y+x
11 10 adantr HCAH+H*yyHxHA=y+x
12 reu5 ∃!yHxHA=y+xyHxHA=y+x*yHxHA=y+x
13 df-rmo *yHxHA=y+x*yyHxHA=y+x
14 13 anbi2i yHxHA=y+x*yHxHA=y+xyHxHA=y+x*yyHxHA=y+x
15 12 14 bitri ∃!yHxHA=y+xyHxHA=y+x*yyHxHA=y+x
16 5 11 15 sylanbrc HCAH+H∃!yHxHA=y+x
17 riotacl ∃!yHxHA=y+xιyH|xHA=y+xH
18 16 17 syl HCAH+HιyH|xHA=y+xH
19 eleq1 ιyH|xHA=y+x=BιyH|xHA=y+xHBH
20 18 19 syl5ibcom HCAH+HιyH|xHA=y+x=BBH
21 20 pm4.71rd HCAH+HιyH|xHA=y+x=BBHιyH|xHA=y+x=B
22 shsss HSHSH+H
23 1 2 22 syl2anc2 HCH+H
24 23 sselda HCAH+HA
25 pjhval HCAprojHA=ιyH|xHA=y+x
26 24 25 syldan HCAH+HprojHA=ιyH|xHA=y+x
27 26 eqeq1d HCAH+HprojHA=BιyH|xHA=y+x=B
28 id BHBH
29 oveq1 y=By+x=B+x
30 29 eqeq2d y=BA=y+xA=B+x
31 30 rexbidv y=BxHA=y+xxHA=B+x
32 31 riota2 BH∃!yHxHA=y+xxHA=B+xιyH|xHA=y+x=B
33 28 16 32 syl2anr HCAH+HBHxHA=B+xιyH|xHA=y+x=B
34 33 pm5.32da HCAH+HBHxHA=B+xBHιyH|xHA=y+x=B
35 21 27 34 3bitr4d HCAH+HprojHA=BBHxHA=B+x