| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1asclunit.1 |  | 
						
							| 2 |  | ply1asclunit.2 |  | 
						
							| 3 |  | ply1asclunit.3 |  | 
						
							| 4 |  | ply1asclunit.4 |  | 
						
							| 5 |  | ply1asclunit.5 |  | 
						
							| 6 |  | ply1unit.d |  | 
						
							| 7 |  | ply1unit.f |  | 
						
							| 8 | 5 | fldcrngd |  | 
						
							| 9 | 8 | crngringd |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 1 | ply1ring |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 13 14 | unitinvcl |  | 
						
							| 16 | 12 15 | sylan |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 13 | unitcl |  | 
						
							| 19 | 16 18 | syl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 5 | flddrngd |  | 
						
							| 22 |  | drngnzr |  | 
						
							| 23 | 1 | ply1nz |  | 
						
							| 24 | 21 22 23 | 3syl |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 13 20 25 16 | unitnz |  | 
						
							| 27 | 6 1 20 17 | deg1nn0cl |  | 
						
							| 28 | 10 19 26 27 | syl3anc |  | 
						
							| 29 | 28 | nn0red |  | 
						
							| 30 | 28 | nn0ge0d |  | 
						
							| 31 | 29 30 | jca |  | 
						
							| 32 | 7 | adantr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 13 20 25 33 | unitnz |  | 
						
							| 35 | 6 1 20 17 | deg1nn0cl |  | 
						
							| 36 | 10 32 34 35 | syl3anc |  | 
						
							| 37 | 36 | nn0red |  | 
						
							| 38 | 36 | nn0ge0d |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 13 14 39 40 | unitlinv |  | 
						
							| 42 | 12 41 | sylan |  | 
						
							| 43 | 42 | fveq2d |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 |  | drngdomn |  | 
						
							| 46 | 21 45 | syl |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 48 17 1 3 | coe1fvalcl |  | 
						
							| 50 | 19 28 49 | syl2anc |  | 
						
							| 51 | 6 1 20 17 4 48 | deg1ldg |  | 
						
							| 52 | 10 19 26 51 | syl3anc |  | 
						
							| 53 | 3 44 4 | domnrrg |  | 
						
							| 54 | 47 50 52 53 | syl3anc |  | 
						
							| 55 | 6 1 44 17 39 20 10 19 26 54 32 34 | deg1mul2 |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 | 1 40 56 6 | mon1pid |  | 
						
							| 58 | 57 | simprd |  | 
						
							| 59 | 21 22 58 | 3syl |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 | 43 55 60 | 3eqtr3d |  | 
						
							| 62 |  | add20 |  | 
						
							| 63 | 62 | anassrs |  | 
						
							| 64 | 63 | simplbda |  | 
						
							| 65 | 31 37 38 61 64 | syl1111anc |  | 
						
							| 66 | 9 | adantr |  | 
						
							| 67 | 7 | adantr |  | 
						
							| 68 | 6 1 17 | deg1xrcl |  | 
						
							| 69 | 7 68 | syl |  | 
						
							| 70 |  | 0xr |  | 
						
							| 71 |  | xeqlelt |  | 
						
							| 72 | 69 70 71 | sylancl |  | 
						
							| 73 | 72 | simprbda |  | 
						
							| 74 | 6 1 17 2 | deg1le0 |  | 
						
							| 75 | 74 | biimpa |  | 
						
							| 76 | 66 67 73 75 | syl21anc |  | 
						
							| 77 | 5 | adantr |  | 
						
							| 78 |  | 0nn0 |  | 
						
							| 79 |  | eqid |  | 
						
							| 80 | 79 17 1 3 | coe1fvalcl |  | 
						
							| 81 | 67 78 80 | sylancl |  | 
						
							| 82 |  | simpl |  | 
						
							| 83 | 72 | simplbda |  | 
						
							| 84 | 6 1 20 17 | deg1lt0 |  | 
						
							| 85 | 84 | necon3bbid |  | 
						
							| 86 | 85 | biimpa |  | 
						
							| 87 | 66 67 83 86 | syl21anc |  | 
						
							| 88 | 9 | adantr |  | 
						
							| 89 | 7 | adantr |  | 
						
							| 90 |  | simpr |  | 
						
							| 91 | 6 1 4 17 20 88 89 90 | deg1le0eq0 |  | 
						
							| 92 | 91 | necon3bid |  | 
						
							| 93 | 92 | biimpa |  | 
						
							| 94 | 82 73 87 93 | syl21anc |  | 
						
							| 95 | 1 2 3 4 77 81 94 | ply1asclunit |  | 
						
							| 96 | 76 95 | eqeltrd |  | 
						
							| 97 | 65 96 | impbida |  |