Description: Variation on pmtrcnel . (Contributed by Thierry Arnoux, 16-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtrcnel.s | |
|
pmtrcnel.t | |
||
pmtrcnel.b | |
||
pmtrcnel.j | |
||
pmtrcnel.d | |
||
pmtrcnel.f | |
||
pmtrcnel.i | |
||
Assertion | pmtrcnel2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrcnel.s | |
|
2 | pmtrcnel.t | |
|
3 | pmtrcnel.b | |
|
4 | pmtrcnel.j | |
|
5 | pmtrcnel.d | |
|
6 | pmtrcnel.f | |
|
7 | pmtrcnel.i | |
|
8 | mvdco | |
|
9 | 8 | a1i | |
10 | coass | |
|
11 | difss | |
|
12 | dmss | |
|
13 | 11 12 | ax-mp | |
14 | 13 7 | sselid | |
15 | 1 3 | symgbasf1o | |
16 | f1of | |
|
17 | 6 15 16 | 3syl | |
18 | 17 | fdmd | |
19 | 14 18 | eleqtrd | |
20 | 17 19 | ffvelcdmd | |
21 | 4 20 | eqeltrid | |
22 | 19 21 | prssd | |
23 | 17 | ffnd | |
24 | fnelnfp | |
|
25 | 24 | biimpa | |
26 | 23 19 7 25 | syl21anc | |
27 | 26 | necomd | |
28 | 4 | a1i | |
29 | 27 28 | neeqtrrd | |
30 | enpr2 | |
|
31 | 19 21 29 30 | syl3anc | |
32 | eqid | |
|
33 | 2 32 | pmtrrn | |
34 | 5 22 31 33 | syl3anc | |
35 | 2 32 | pmtrff1o | |
36 | f1ococnv1 | |
|
37 | 34 35 36 | 3syl | |
38 | 37 | coeq1d | |
39 | 10 38 | eqtr3id | |
40 | fcoi2 | |
|
41 | 17 40 | syl | |
42 | 39 41 | eqtrd | |
43 | 42 | difeq1d | |
44 | 43 | dmeqd | |
45 | 2 32 | pmtrfcnv | |
46 | 34 45 | syl | |
47 | 46 | difeq1d | |
48 | 47 | dmeqd | |
49 | 2 | pmtrmvd | |
50 | 5 22 31 49 | syl3anc | |
51 | 48 50 | eqtrd | |
52 | 51 | uneq1d | |
53 | uncom | |
|
54 | 52 53 | eqtrdi | |
55 | 9 44 54 | 3sstr3d | |
56 | 55 | ssdifd | |
57 | difun2 | |
|
58 | difss | |
|
59 | 57 58 | eqsstri | |
60 | 56 59 | sstrdi | |