Metamath Proof Explorer


Theorem pntlemc

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, U is α, E is ε, and K isK. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
Assertion pntlemc φ E + K + E 0 1 1 < K U E +

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 1 2 3 4 5 6 pntlemd φ L + D + F +
12 11 simp2d φ D +
13 7 12 rpdivcld φ U D +
14 9 13 eqeltrid φ E +
15 3 14 rpdivcld φ B E +
16 15 rpred φ B E
17 16 rpefcld φ e B E +
18 10 17 eqeltrid φ K +
19 14 rpred φ E
20 14 rpgt0d φ 0 < E
21 7 rpred φ U
22 2 rpred φ A
23 12 rpred φ D
24 22 ltp1d φ A < A + 1
25 24 5 breqtrrdi φ A < D
26 21 22 23 8 25 lelttrd φ U < D
27 12 rpcnd φ D
28 27 mulid1d φ D 1 = D
29 26 28 breqtrrd φ U < D 1
30 1red φ 1
31 21 30 12 ltdivmuld φ U D < 1 U < D 1
32 29 31 mpbird φ U D < 1
33 9 32 eqbrtrid φ E < 1
34 0xr 0 *
35 1xr 1 *
36 elioo2 0 * 1 * E 0 1 E 0 < E E < 1
37 34 35 36 mp2an E 0 1 E 0 < E E < 1
38 19 20 33 37 syl3anbrc φ E 0 1
39 efgt1 B E + 1 < e B E
40 15 39 syl φ 1 < e B E
41 40 10 breqtrrdi φ 1 < K
42 1re 1
43 ltaddrp 1 A + 1 < 1 + A
44 42 2 43 sylancr φ 1 < 1 + A
45 7 rpcnne0d φ U U 0
46 divid U U 0 U U = 1
47 45 46 syl φ U U = 1
48 2 rpcnd φ A
49 ax-1cn 1
50 addcom A 1 A + 1 = 1 + A
51 48 49 50 sylancl φ A + 1 = 1 + A
52 5 51 eqtrid φ D = 1 + A
53 44 47 52 3brtr4d φ U U < D
54 21 7 12 53 ltdiv23d φ U D < U
55 9 54 eqbrtrid φ E < U
56 difrp E U E < U U E +
57 19 21 56 syl2anc φ E < U U E +
58 55 57 mpbid φ U E +
59 38 41 58 3jca φ E 0 1 1 < K U E +
60 14 18 59 3jca φ E + K + E 0 1 1 < K U E +