Step |
Hyp |
Ref |
Expression |
1 |
|
prdsdsf.y |
|
2 |
|
prdsdsf.b |
|
3 |
|
prdsdsf.v |
|
4 |
|
prdsdsf.e |
|
5 |
|
prdsdsf.d |
|
6 |
|
prdsdsf.s |
|
7 |
|
prdsdsf.i |
|
8 |
|
prdsdsf.r |
|
9 |
|
prdsdsf.m |
|
10 |
|
simpr |
|
11 |
8
|
elexd |
|
12 |
11
|
ralrimiva |
|
13 |
12
|
adantr |
|
14 |
|
nfcsb1v |
|
15 |
14
|
nfel1 |
|
16 |
|
csbeq1a |
|
17 |
16
|
eleq1d |
|
18 |
15 17
|
rspc |
|
19 |
13 18
|
mpan9 |
|
20 |
|
eqid |
|
21 |
20
|
fvmpts |
|
22 |
10 19 21
|
syl2anc |
|
23 |
22
|
fveq2d |
|
24 |
23
|
oveqd |
|
25 |
6
|
adantr |
|
26 |
7
|
adantr |
|
27 |
|
simprl |
|
28 |
1 2 25 26 13 3 27
|
prdsbascl |
|
29 |
|
nfcsb1v |
|
30 |
29
|
nfel2 |
|
31 |
|
fveq2 |
|
32 |
|
csbeq1a |
|
33 |
31 32
|
eleq12d |
|
34 |
30 33
|
rspc |
|
35 |
28 34
|
mpan9 |
|
36 |
|
simprr |
|
37 |
1 2 25 26 13 3 36
|
prdsbascl |
|
38 |
29
|
nfel2 |
|
39 |
|
fveq2 |
|
40 |
39 32
|
eleq12d |
|
41 |
38 40
|
rspc |
|
42 |
37 41
|
mpan9 |
|
43 |
35 42
|
ovresd |
|
44 |
24 43
|
eqtr4d |
|
45 |
9
|
ralrimiva |
|
46 |
45
|
adantr |
|
47 |
|
nfcv |
|
48 |
47 14
|
nffv |
|
49 |
29 29
|
nfxp |
|
50 |
48 49
|
nfres |
|
51 |
|
nfcv |
|
52 |
51 29
|
nffv |
|
53 |
50 52
|
nfel |
|
54 |
16
|
fveq2d |
|
55 |
32
|
sqxpeqd |
|
56 |
54 55
|
reseq12d |
|
57 |
4 56
|
eqtrid |
|
58 |
32
|
fveq2d |
|
59 |
57 58
|
eleq12d |
|
60 |
53 59
|
rspc |
|
61 |
46 60
|
mpan9 |
|
62 |
|
xmetcl |
|
63 |
61 35 42 62
|
syl3anc |
|
64 |
44 63
|
eqeltrd |
|
65 |
64
|
fmpttd |
|
66 |
65
|
frnd |
|
67 |
|
0xr |
|
68 |
67
|
a1i |
|
69 |
68
|
snssd |
|
70 |
66 69
|
unssd |
|
71 |
|
supxrcl |
|
72 |
70 71
|
syl |
|
73 |
|
ssun2 |
|
74 |
|
c0ex |
|
75 |
74
|
snss |
|
76 |
73 75
|
mpbir |
|
77 |
|
supxrub |
|
78 |
70 76 77
|
sylancl |
|
79 |
|
elxrge0 |
|
80 |
72 78 79
|
sylanbrc |
|
81 |
80
|
ralrimivva |
|
82 |
|
eqid |
|
83 |
82
|
fmpo |
|
84 |
81 83
|
sylib |
|
85 |
7
|
mptexd |
|
86 |
8
|
ralrimiva |
|
87 |
|
dmmptg |
|
88 |
86 87
|
syl |
|
89 |
1 6 85 2 88 5
|
prdsds |
|
90 |
89
|
feq1d |
|
91 |
84 90
|
mpbird |
|