| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsdsf.y |
⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
| 2 |
|
prdsdsf.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
prdsdsf.v |
⊢ 𝑉 = ( Base ‘ 𝑅 ) |
| 4 |
|
prdsdsf.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
| 5 |
|
prdsdsf.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
| 6 |
|
prdsdsf.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 7 |
|
prdsdsf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
| 8 |
|
prdsdsf.r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) |
| 9 |
|
prdsdsf.m |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
| 11 |
8
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ V ) |
| 12 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V ) |
| 14 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 |
| 15 |
14
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V |
| 16 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑅 = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 ∈ V ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 18 |
15 17
|
rspc |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 19 |
13 18
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) |
| 20 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
| 21 |
20
|
fvmpts |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 22 |
10 19 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 23 |
22
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) = ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 24 |
23
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
| 26 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑋 ) |
| 27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
| 28 |
1 2 25 26 13 3 27
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 29 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑉 |
| 30 |
29
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 |
| 31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 32 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑉 = ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 33 |
31 32
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ↔ ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 34 |
30 33
|
rspc |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 → ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 35 |
28 34
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) |
| 37 |
1 2 25 26 13 3 36
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 38 |
29
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 |
| 39 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ) |
| 40 |
39 32
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ↔ ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 41 |
38 40
|
rspc |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 → ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 42 |
37 41
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 43 |
35 42
|
ovresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 44 |
24 43
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 45 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 47 |
|
nfcv |
⊢ Ⅎ 𝑥 dist |
| 48 |
47 14
|
nffv |
⊢ Ⅎ 𝑥 ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 49 |
29 29
|
nfxp |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 50 |
48 49
|
nfres |
⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑥 ∞Met |
| 52 |
51 29
|
nffv |
⊢ Ⅎ 𝑥 ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 53 |
50 52
|
nfel |
⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 54 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( dist ‘ 𝑅 ) = ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 55 |
32
|
sqxpeqd |
⊢ ( 𝑥 = 𝑦 → ( 𝑉 × 𝑉 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 56 |
54 55
|
reseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 57 |
4 56
|
eqtrid |
⊢ ( 𝑥 = 𝑦 → 𝐸 = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 58 |
32
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ∞Met ‘ 𝑉 ) = ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 59 |
57 58
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ↔ ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 60 |
53 59
|
rspc |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 61 |
46 60
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 62 |
|
xmetcl |
⊢ ( ( ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ∧ ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) → ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ∈ ℝ* ) |
| 63 |
61 35 42 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ∈ ℝ* ) |
| 64 |
44 63
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ∈ ℝ* ) |
| 65 |
64
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 66 |
65
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ⊆ ℝ* ) |
| 67 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 68 |
67
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ* ) |
| 69 |
68
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ* ) |
| 70 |
66 69
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 71 |
|
supxrcl |
⊢ ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ⊆ ℝ* → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ* ) |
| 72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ* ) |
| 73 |
|
ssun2 |
⊢ { 0 } ⊆ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) |
| 74 |
|
c0ex |
⊢ 0 ∈ V |
| 75 |
74
|
snss |
⊢ ( 0 ∈ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ↔ { 0 } ⊆ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ) |
| 76 |
73 75
|
mpbir |
⊢ 0 ∈ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) |
| 77 |
|
supxrub |
⊢ ( ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ 0 ∈ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ) → 0 ≤ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 78 |
70 76 77
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ≤ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 79 |
|
elxrge0 |
⊢ ( sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 80 |
72 78 79
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 81 |
80
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 82 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 83 |
82
|
fmpo |
⊢ ( ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 84 |
81 83
|
sylib |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 85 |
7
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ∈ V ) |
| 86 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 87 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 → dom ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = 𝐼 ) |
| 88 |
86 87
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = 𝐼 ) |
| 89 |
1 6 85 2 88 5
|
prdsds |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 90 |
89
|
feq1d |
⊢ ( 𝜑 → ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) ) |
| 91 |
84 90
|
mpbird |
⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |