| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsdsf.y |
⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
| 2 |
|
prdsdsf.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
prdsdsf.v |
⊢ 𝑉 = ( Base ‘ 𝑅 ) |
| 4 |
|
prdsdsf.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
| 5 |
|
prdsdsf.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
| 6 |
|
prdsdsf.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 7 |
|
prdsdsf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
| 8 |
|
prdsdsf.r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) |
| 9 |
|
prdsdsf.m |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 10 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 12 |
1 2 3 4 5 6 7 8 9
|
prdsdsf |
⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 13 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 14 |
|
fss |
⊢ ( ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) |
| 16 |
12
|
fovcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ) |
| 17 |
|
elxrge0 |
⊢ ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑓 𝐷 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( 𝑓 𝐷 𝑔 ) ) ) |
| 18 |
17
|
simprbi |
⊢ ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) ) |
| 19 |
16 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑋 ) |
| 22 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
| 25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) |
| 26 |
1 2 20 21 23 24 25 3 4 5
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 27 |
26
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑓 𝐷 𝑔 ) ≤ 0 ↔ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ 0 ) ) |
| 28 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 29 |
1 2 20 21 23 3 24
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 30 |
29
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 31 |
1 2 20 21 23 3 25
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 32 |
31
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 33 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 34 |
28 30 32 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 35 |
34
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 36 |
35
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ* ) |
| 37 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ* ) |
| 39 |
38
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ* ) |
| 40 |
36 39
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 41 |
|
supxrleub |
⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ 0 ∈ ℝ* ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ) ) |
| 42 |
40 37 41
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ) ) |
| 43 |
|
0le0 |
⊢ 0 ≤ 0 |
| 44 |
|
c0ex |
⊢ 0 ∈ V |
| 45 |
|
breq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 ≤ 0 ↔ 0 ≤ 0 ) ) |
| 46 |
44 45
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 0 } 𝑧 ≤ 0 ↔ 0 ≤ 0 ) |
| 47 |
43 46
|
mpbir |
⊢ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ 0 |
| 48 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ 0 ) ) |
| 49 |
47 48
|
mpbiran2 |
⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ) |
| 50 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V |
| 51 |
50
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V |
| 52 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 53 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) → ( 𝑧 ≤ 0 ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) ) |
| 54 |
52 53
|
ralrnmptw |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) ) |
| 55 |
51 54
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) |
| 56 |
49 55
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) |
| 57 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 58 |
28 30 32 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 59 |
58
|
biantrud |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 60 |
|
xrletri3 |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 61 |
34 37 60
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 62 |
|
xmeteq0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 63 |
28 30 32 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 64 |
59 61 63
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 65 |
64
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 66 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
| 67 |
66
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 68 |
22 67
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 70 |
1 2 20 21 69 24
|
prdsbasfn |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 Fn 𝐼 ) |
| 71 |
1 2 20 21 69 25
|
prdsbasfn |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 Fn 𝐼 ) |
| 72 |
|
eqfnfv |
⊢ ( ( 𝑓 Fn 𝐼 ∧ 𝑔 Fn 𝐼 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 73 |
70 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 74 |
65 73
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ 𝑓 = 𝑔 ) ) |
| 75 |
56 74
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ 𝑓 = 𝑔 ) ) |
| 76 |
27 42 75
|
3bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑓 𝐷 𝑔 ) ≤ 0 ↔ 𝑓 = 𝑔 ) ) |
| 77 |
26
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 78 |
77
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 79 |
9
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 80 |
29
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 81 |
80
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 82 |
81
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 83 |
31
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 84 |
83
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 85 |
84
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 86 |
79 82 85 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 87 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝑆 ∈ 𝑊 ) |
| 88 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝐼 ∈ 𝑋 ) |
| 89 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 90 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ℎ ∈ 𝐵 ) |
| 91 |
1 2 87 88 89 3 90
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( ℎ ‘ 𝑥 ) ∈ 𝑉 ) |
| 92 |
91
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) ∈ 𝑉 ) |
| 93 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 94 |
79 92 82 93
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 95 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑓 ) ∈ ℝ ) |
| 96 |
95
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑓 ) ∈ ℝ ) |
| 97 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) |
| 98 |
79 92 82 97
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) |
| 99 |
94
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 100 |
99
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ⊆ ℝ* ) |
| 101 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ∈ ℝ* ) |
| 102 |
101
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → { 0 } ⊆ ℝ* ) |
| 103 |
100 102
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 104 |
|
ssun1 |
⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
| 105 |
|
ovex |
⊢ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ V |
| 106 |
105
|
elabrex |
⊢ ( 𝑥 ∈ 𝐼 → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) } ) |
| 107 |
106
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) } ) |
| 108 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) |
| 109 |
108
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) } |
| 110 |
107 109
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 111 |
104 110
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 112 |
|
supxrub |
⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 113 |
103 111 112
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 114 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝑓 ∈ 𝐵 ) |
| 115 |
1 2 87 88 89 90 114 3 4 5
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑓 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 116 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑓 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 117 |
113 116
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑓 ) ) |
| 118 |
|
xrrege0 |
⊢ ( ( ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( ℎ 𝐷 𝑓 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑓 ) ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 119 |
94 96 98 117 118
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 120 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 121 |
79 92 85 120
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 122 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑔 ) ∈ ℝ ) |
| 123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑔 ) ∈ ℝ ) |
| 124 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 125 |
79 92 85 124
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 126 |
121
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 127 |
126
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ* ) |
| 128 |
127 102
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 129 |
|
ssun1 |
⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
| 130 |
|
ovex |
⊢ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V |
| 131 |
130
|
elabrex |
⊢ ( 𝑥 ∈ 𝐼 → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) } ) |
| 132 |
131
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) } ) |
| 133 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 134 |
133
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) } |
| 135 |
132 134
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 136 |
129 135
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 137 |
|
supxrub |
⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 138 |
128 136 137
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 139 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝑔 ∈ 𝐵 ) |
| 140 |
1 2 87 88 89 90 139 3 4 5
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 142 |
138 141
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑔 ) ) |
| 143 |
|
xrrege0 |
⊢ ( ( ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑔 ) ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 144 |
121 123 125 142 143
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 145 |
119 144
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 146 |
79 82 85 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 147 |
|
xmettri2 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 148 |
79 92 82 85 147
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 149 |
119 144
|
rexaddd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 150 |
148 149
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 151 |
|
xrrege0 |
⊢ ( ( ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 152 |
86 145 146 150 151
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 153 |
|
readdcl |
⊢ ( ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ ) |
| 154 |
153
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ ) |
| 155 |
154
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ ) |
| 156 |
119 144 96 123 117 142
|
le2addd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 157 |
152 145 155 150 156
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 158 |
157
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 159 |
86
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 160 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) → ( 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 161 |
52 160
|
ralrnmptw |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 162 |
159 161
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 163 |
158 162
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 164 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 165 |
164 90 114
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
| 166 |
|
elxrge0 |
⊢ ( ( ℎ 𝐷 𝑓 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ* ∧ 0 ≤ ( ℎ 𝐷 𝑓 ) ) ) |
| 167 |
166
|
simprbi |
⊢ ( ( ℎ 𝐷 𝑓 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( ℎ 𝐷 𝑓 ) ) |
| 168 |
165 167
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ≤ ( ℎ 𝐷 𝑓 ) ) |
| 169 |
164 90 139
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ) |
| 170 |
|
elxrge0 |
⊢ ( ( ℎ 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℎ 𝐷 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( ℎ 𝐷 𝑔 ) ) ) |
| 171 |
170
|
simprbi |
⊢ ( ( ℎ 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( ℎ 𝐷 𝑔 ) ) |
| 172 |
169 171
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ≤ ( ℎ 𝐷 𝑔 ) ) |
| 173 |
95 122 168 172
|
addge0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 174 |
|
breq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ 0 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 175 |
44 174
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ 0 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 176 |
173 175
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 177 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 178 |
163 176 177
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 179 |
40
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 180 |
179
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 181 |
154
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ* ) |
| 182 |
|
supxrleub |
⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 183 |
180 181 182
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 184 |
178 183
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 185 |
78 184
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑓 𝐷 𝑔 ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 186 |
11 15 19 76 185
|
isxmet2d |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |