Metamath Proof Explorer


Theorem prmlem0

Description: Lemma for prmlem1 and prmlem2 . (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses prmlem0.1 ¬2MxMx2x2N¬xN
prmlem0.2 K¬KN
prmlem0.3 K+2=M
Assertion prmlem0 ¬2KxKx2x2N¬xN

Proof

Step Hyp Ref Expression
1 prmlem0.1 ¬2MxMx2x2N¬xN
2 prmlem0.2 K¬KN
3 prmlem0.3 K+2=M
4 eldifi x2x
5 eleq1 x=KxK
6 breq1 x=KxNKN
7 6 notbid x=K¬xN¬KN
8 5 7 imbi12d x=Kx¬xNK¬KN
9 2 8 mpbiri x=Kx¬xN
10 4 9 syl5 x=Kx2¬xN
11 10 adantrd x=Kx2x2N¬xN
12 11 a1i ¬2KxKx=Kx2x2N¬xN
13 uzp1 xK+1x=K+1xK+1+1
14 eleq1 x=K+1x2K+12
15 14 adantl ¬2KxKx=K+1x2K+12
16 eldifsn K+12K+1K+12
17 eluzel2 xKK
18 17 adantl ¬2KxKK
19 simpl ¬2KxK¬2K
20 1z 1
21 n2dvds1 ¬21
22 opoe K¬2K1¬212K+1
23 20 21 22 mpanr12 K¬2K2K+1
24 18 19 23 syl2anc ¬2KxK2K+1
25 24 adantr ¬2KxKK+12K+1
26 2z 2
27 uzid 222
28 26 27 mp1i ¬2KxK22
29 dvdsprm 22K+12K+12=K+1
30 28 29 sylan ¬2KxKK+12K+12=K+1
31 25 30 mpbid ¬2KxKK+12=K+1
32 31 eqcomd ¬2KxKK+1K+1=2
33 32 a1d ¬2KxKK+1xNK+1=2
34 33 necon3ad ¬2KxKK+1K+12¬xN
35 34 expimpd ¬2KxKK+1K+12¬xN
36 16 35 biimtrid ¬2KxKK+12¬xN
37 36 adantr ¬2KxKx=K+1K+12¬xN
38 15 37 sylbid ¬2KxKx=K+1x2¬xN
39 38 adantrd ¬2KxKx=K+1x2x2N¬xN
40 39 ex ¬2KxKx=K+1x2x2N¬xN
41 18 zcnd ¬2KxKK
42 ax-1cn 1
43 addass K11K+1+1=K+1+1
44 42 42 43 mp3an23 KK+1+1=K+1+1
45 41 44 syl ¬2KxKK+1+1=K+1+1
46 1p1e2 1+1=2
47 46 oveq2i K+1+1=K+2
48 47 3 eqtri K+1+1=M
49 45 48 eqtrdi ¬2KxKK+1+1=M
50 49 fveq2d ¬2KxKK+1+1=M
51 50 eleq2d ¬2KxKxK+1+1xM
52 dvdsaddr 2K2K2K+2
53 26 18 52 sylancr ¬2KxK2K2K+2
54 3 breq2i 2K+22M
55 53 54 bitrdi ¬2KxK2K2M
56 19 55 mtbid ¬2KxK¬2M
57 1 ex ¬2MxMx2x2N¬xN
58 56 57 syl ¬2KxKxMx2x2N¬xN
59 51 58 sylbid ¬2KxKxK+1+1x2x2N¬xN
60 40 59 jaod ¬2KxKx=K+1xK+1+1x2x2N¬xN
61 13 60 syl5 ¬2KxKxK+1x2x2N¬xN
62 uzp1 xKx=KxK+1
63 62 adantl ¬2KxKx=KxK+1
64 12 61 63 mpjaod ¬2KxKx2x2N¬xN