Description: Lemma for prmlem1 and prmlem2 . (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmlem0.1 | |
|
prmlem0.2 | |
||
prmlem0.3 | |
||
Assertion | prmlem0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem0.1 | |
|
2 | prmlem0.2 | |
|
3 | prmlem0.3 | |
|
4 | eldifi | |
|
5 | eleq1 | |
|
6 | breq1 | |
|
7 | 6 | notbid | |
8 | 5 7 | imbi12d | |
9 | 2 8 | mpbiri | |
10 | 4 9 | syl5 | |
11 | 10 | adantrd | |
12 | 11 | a1i | |
13 | uzp1 | |
|
14 | eleq1 | |
|
15 | 14 | adantl | |
16 | eldifsn | |
|
17 | eluzel2 | |
|
18 | 17 | adantl | |
19 | simpl | |
|
20 | 1z | |
|
21 | n2dvds1 | |
|
22 | opoe | |
|
23 | 20 21 22 | mpanr12 | |
24 | 18 19 23 | syl2anc | |
25 | 24 | adantr | |
26 | 2z | |
|
27 | uzid | |
|
28 | 26 27 | mp1i | |
29 | dvdsprm | |
|
30 | 28 29 | sylan | |
31 | 25 30 | mpbid | |
32 | 31 | eqcomd | |
33 | 32 | a1d | |
34 | 33 | necon3ad | |
35 | 34 | expimpd | |
36 | 16 35 | biimtrid | |
37 | 36 | adantr | |
38 | 15 37 | sylbid | |
39 | 38 | adantrd | |
40 | 39 | ex | |
41 | 18 | zcnd | |
42 | ax-1cn | |
|
43 | addass | |
|
44 | 42 42 43 | mp3an23 | |
45 | 41 44 | syl | |
46 | 1p1e2 | |
|
47 | 46 | oveq2i | |
48 | 47 3 | eqtri | |
49 | 45 48 | eqtrdi | |
50 | 49 | fveq2d | |
51 | 50 | eleq2d | |
52 | dvdsaddr | |
|
53 | 26 18 52 | sylancr | |
54 | 3 | breq2i | |
55 | 53 54 | bitrdi | |
56 | 19 55 | mtbid | |
57 | 1 | ex | |
58 | 56 57 | syl | |
59 | 51 58 | sylbid | |
60 | 40 59 | jaod | |
61 | 13 60 | syl5 | |
62 | uzp1 | |
|
63 | 62 | adantl | |
64 | 12 61 63 | mpjaod | |