Metamath Proof Explorer


Theorem prmop1

Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmop1 N0#pN+1=ifN+1#pNN+1#pN

Proof

Step Hyp Ref Expression
1 peano2nn0 N0N+10
2 prmoval N+10#pN+1=k=1N+1ifkk1
3 1 2 syl N0#pN+1=k=1N+1ifkk1
4 nn0p1nn N0N+1
5 elnnuz N+1N+11
6 4 5 sylib N0N+11
7 elfzelz k1N+1k
8 7 zcnd k1N+1k
9 8 adantl N0k1N+1k
10 1cnd N0k1N+11
11 9 10 ifcld N0k1N+1ifkk1
12 eleq1 k=N+1kN+1
13 id k=N+1k=N+1
14 12 13 ifbieq1d k=N+1ifkk1=ifN+1N+11
15 6 11 14 fprodm1 N0k=1N+1ifkk1=k=1N+1-1ifkk1ifN+1N+11
16 nn0cn N0N
17 pncan1 NN+1-1=N
18 16 17 syl N0N+1-1=N
19 18 oveq2d N01N+1-1=1N
20 19 prodeq1d N0k=1N+1-1ifkk1=k=1Nifkk1
21 20 oveq1d N0k=1N+1-1ifkk1ifN+1N+11=k=1Nifkk1ifN+1N+11
22 prmoval N0#pN=k=1Nifkk1
23 22 eqcomd N0k=1Nifkk1=#pN
24 23 adantl N+1N0k=1Nifkk1=#pN
25 24 oveq1d N+1N0k=1Nifkk1N+1=#pNN+1
26 iftrue N+1ifN+1N+11=N+1
27 26 oveq2d N+1k=1Nifkk1ifN+1N+11=k=1Nifkk1N+1
28 iftrue N+1ifN+1#pNN+1#pN=#pNN+1
29 27 28 eqeq12d N+1k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pNk=1Nifkk1N+1=#pNN+1
30 29 adantr N+1N0k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pNk=1Nifkk1N+1=#pNN+1
31 25 30 mpbird N+1N0k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pN
32 fzfid N01NFin
33 elfznn k1Nk
34 1nn 1
35 34 a1i k1N1
36 33 35 ifcld k1Nifkk1
37 36 adantl N0k1Nifkk1
38 32 37 fprodnncl N0k=1Nifkk1
39 38 nncnd N0k=1Nifkk1
40 39 adantl ¬N+1N0k=1Nifkk1
41 40 mulridd ¬N+1N0k=1Nifkk11=k=1Nifkk1
42 22 adantl ¬N+1N0#pN=k=1Nifkk1
43 41 42 eqtr4d ¬N+1N0k=1Nifkk11=#pN
44 iffalse ¬N+1ifN+1N+11=1
45 44 oveq2d ¬N+1k=1Nifkk1ifN+1N+11=k=1Nifkk11
46 iffalse ¬N+1ifN+1#pNN+1#pN=#pN
47 45 46 eqeq12d ¬N+1k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pNk=1Nifkk11=#pN
48 47 adantr ¬N+1N0k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pNk=1Nifkk11=#pN
49 43 48 mpbird ¬N+1N0k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pN
50 31 49 pm2.61ian N0k=1Nifkk1ifN+1N+11=ifN+1#pNN+1#pN
51 21 50 eqtrd N0k=1N+1-1ifkk1ifN+1N+11=ifN+1#pNN+1#pN
52 3 15 51 3eqtrd N0#pN+1=ifN+1#pNN+1#pN