Metamath Proof Explorer


Theorem prodeq2ii

Description: Equality theorem for product, with the class expressions B and C guarded by _I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion prodeq2ii kAIB=ICkAB=kAC

Proof

Step Hyp Ref Expression
1 eluzelz nmn
2 1 adantl kAIB=ICnmn
3 nfra1 kkAIB=IC
4 rsp kAIB=ICkAIB=IC
5 4 adantr kAIB=ICkkAIB=IC
6 ifeq1 IB=ICifkAIBI1=ifkAICI1
7 5 6 syl6 kAIB=ICkkAifkAIBI1=ifkAICI1
8 iffalse ¬kAifkAIBI1=I1
9 iffalse ¬kAifkAICI1=I1
10 8 9 eqtr4d ¬kAifkAIBI1=ifkAICI1
11 7 10 pm2.61d1 kAIB=ICkifkAIBI1=ifkAICI1
12 fvif IifkAB1=ifkAIBI1
13 fvif IifkAC1=ifkAICI1
14 11 12 13 3eqtr4g kAIB=ICkIifkAB1=IifkAC1
15 3 14 mpteq2da kAIB=ICkIifkAB1=kIifkAC1
16 15 adantr kAIB=ICxnkIifkAB1=kIifkAC1
17 16 fveq1d kAIB=ICxnkIifkAB1x=kIifkAC1x
18 17 adantlr kAIB=ICnmxnkIifkAB1x=kIifkAC1x
19 eqid kifkAB1=kifkAB1
20 eqid kIifkAB1=kIifkAB1
21 19 20 fvmptex kifkAB1x=kIifkAB1x
22 eqid kifkAC1=kifkAC1
23 eqid kIifkAC1=kIifkAC1
24 22 23 fvmptex kifkAC1x=kIifkAC1x
25 18 21 24 3eqtr4g kAIB=ICnmxnkifkAB1x=kifkAC1x
26 2 25 seqfeq kAIB=ICnmseqn×kifkAB1=seqn×kifkAC1
27 26 breq1d kAIB=ICnmseqn×kifkAB1yseqn×kifkAC1y
28 27 anbi2d kAIB=ICnmy0seqn×kifkAB1yy0seqn×kifkAC1y
29 28 exbidv kAIB=ICnmyy0seqn×kifkAB1yyy0seqn×kifkAC1y
30 29 rexbidva kAIB=ICnmyy0seqn×kifkAB1ynmyy0seqn×kifkAC1y
31 30 adantr kAIB=ICmnmyy0seqn×kifkAB1ynmyy0seqn×kifkAC1y
32 simpr kAIB=ICmm
33 15 adantr kAIB=ICxmkIifkAB1=kIifkAC1
34 33 fveq1d kAIB=ICxmkIifkAB1x=kIifkAC1x
35 34 21 24 3eqtr4g kAIB=ICxmkifkAB1x=kifkAC1x
36 35 adantlr kAIB=ICmxmkifkAB1x=kifkAC1x
37 32 36 seqfeq kAIB=ICmseqm×kifkAB1=seqm×kifkAC1
38 37 breq1d kAIB=ICmseqm×kifkAB1xseqm×kifkAC1x
39 31 38 3anbi23d kAIB=ICmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xAmnmyy0seqn×kifkAC1yseqm×kifkAC1x
40 39 rexbidva kAIB=ICmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmAmnmyy0seqn×kifkAC1yseqm×kifkAC1x
41 simplr kAIB=ICmf:1m1-1 ontoAm
42 nnuz =1
43 41 42 eleqtrdi kAIB=ICmf:1m1-1 ontoAm1
44 f1of f:1m1-1 ontoAf:1mA
45 44 ad2antlr kAIB=ICmf:1m1-1 ontoAx1mf:1mA
46 ffvelcdm f:1mAx1mfxA
47 45 46 sylancom kAIB=ICmf:1m1-1 ontoAx1mfxA
48 simplll kAIB=ICmf:1m1-1 ontoAx1mkAIB=IC
49 nfcsb1v _kfx/kIB
50 nfcsb1v _kfx/kIC
51 49 50 nfeq kfx/kIB=fx/kIC
52 csbeq1a k=fxIB=fx/kIB
53 csbeq1a k=fxIC=fx/kIC
54 52 53 eqeq12d k=fxIB=ICfx/kIB=fx/kIC
55 51 54 rspc fxAkAIB=ICfx/kIB=fx/kIC
56 47 48 55 sylc kAIB=ICmf:1m1-1 ontoAx1mfx/kIB=fx/kIC
57 fvex fxV
58 csbfv2g fxVfx/kIB=Ifx/kB
59 57 58 ax-mp fx/kIB=Ifx/kB
60 csbfv2g fxVfx/kIC=Ifx/kC
61 57 60 ax-mp fx/kIC=Ifx/kC
62 56 59 61 3eqtr3g kAIB=ICmf:1m1-1 ontoAx1mIfx/kB=Ifx/kC
63 elfznn x1mx
64 63 adantl kAIB=ICmf:1m1-1 ontoAx1mx
65 fveq2 n=xfn=fx
66 65 csbeq1d n=xfn/kB=fx/kB
67 eqid nfn/kB=nfn/kB
68 66 67 fvmpti xnfn/kBx=Ifx/kB
69 64 68 syl kAIB=ICmf:1m1-1 ontoAx1mnfn/kBx=Ifx/kB
70 65 csbeq1d n=xfn/kC=fx/kC
71 eqid nfn/kC=nfn/kC
72 70 71 fvmpti xnfn/kCx=Ifx/kC
73 64 72 syl kAIB=ICmf:1m1-1 ontoAx1mnfn/kCx=Ifx/kC
74 62 69 73 3eqtr4d kAIB=ICmf:1m1-1 ontoAx1mnfn/kBx=nfn/kCx
75 43 74 seqfveq kAIB=ICmf:1m1-1 ontoAseq1×nfn/kBm=seq1×nfn/kCm
76 75 eqeq2d kAIB=ICmf:1m1-1 ontoAx=seq1×nfn/kBmx=seq1×nfn/kCm
77 76 pm5.32da kAIB=ICmf:1m1-1 ontoAx=seq1×nfn/kBmf:1m1-1 ontoAx=seq1×nfn/kCm
78 77 exbidv kAIB=ICmff:1m1-1 ontoAx=seq1×nfn/kBmff:1m1-1 ontoAx=seq1×nfn/kCm
79 78 rexbidva kAIB=ICmff:1m1-1 ontoAx=seq1×nfn/kBmmff:1m1-1 ontoAx=seq1×nfn/kCm
80 40 79 orbi12d kAIB=ICmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBmmAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
81 80 iotabidv kAIB=ICιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm=ιx|mAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
82 df-prod kAB=ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
83 df-prod kAC=ιx|mAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
84 81 82 83 3eqtr4g kAIB=ICkAB=kAC