Step |
Hyp |
Ref |
Expression |
1 |
|
psdadd.s |
|
2 |
|
psdadd.b |
|
3 |
|
psdadd.p |
|
4 |
|
psdadd.r |
|
5 |
|
psdadd.x |
|
6 |
|
psdadd.f |
|
7 |
|
psdadd.g |
|
8 |
|
eqid |
|
9 |
1 2 8 5 6
|
psdval |
|
10 |
1 2 8 5 7
|
psdval |
|
11 |
9 10
|
oveq12d |
|
12 |
|
ovex |
|
13 |
|
eqid |
|
14 |
12 13
|
fnmpti |
|
15 |
14
|
a1i |
|
16 |
|
ovex |
|
17 |
|
eqid |
|
18 |
16 17
|
fnmpti |
|
19 |
18
|
a1i |
|
20 |
|
ovex |
|
21 |
20
|
rabex |
|
22 |
21
|
a1i |
|
23 |
|
inidm |
|
24 |
|
fveq1 |
|
25 |
24
|
oveq1d |
|
26 |
|
fvoveq1 |
|
27 |
25 26
|
oveq12d |
|
28 |
|
simpr |
|
29 |
|
ovexd |
|
30 |
13 27 28 29
|
fvmptd3 |
|
31 |
|
fvoveq1 |
|
32 |
25 31
|
oveq12d |
|
33 |
|
ovexd |
|
34 |
17 32 28 33
|
fvmptd3 |
|
35 |
15 19 22 22 23 30 34
|
offval |
|
36 |
|
eqid |
|
37 |
1 2 36 3 6 7
|
psradd |
|
38 |
37
|
adantr |
|
39 |
38
|
fveq1d |
|
40 |
|
reldmpsr |
|
41 |
1 2 40
|
strov2rcl |
|
42 |
6 41
|
syl |
|
43 |
8
|
psrbagsn |
|
44 |
42 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
8
|
psrbagaddcl |
|
47 |
28 45 46
|
syl2anc |
|
48 |
|
eqid |
|
49 |
1 48 8 2 6
|
psrelbas |
|
50 |
49
|
ffnd |
|
51 |
1 48 8 2 7
|
psrelbas |
|
52 |
51
|
ffnd |
|
53 |
|
eqidd |
|
54 |
|
eqidd |
|
55 |
50 52 22 22 23 53 54
|
ofval |
|
56 |
47 55
|
syldan |
|
57 |
39 56
|
eqtrd |
|
58 |
57
|
oveq2d |
|
59 |
4
|
adantr |
|
60 |
8
|
psrbagf |
|
61 |
60
|
adantl |
|
62 |
5
|
adantr |
|
63 |
61 62
|
ffvelcdmd |
|
64 |
|
peano2nn0 |
|
65 |
63 64
|
syl |
|
66 |
6
|
adantr |
|
67 |
1 48 8 2 66
|
psrelbas |
|
68 |
67 47
|
ffvelcdmd |
|
69 |
51
|
adantr |
|
70 |
69 47
|
ffvelcdmd |
|
71 |
|
eqid |
|
72 |
48 71 36
|
mulgnn0di |
|
73 |
59 65 68 70 72
|
syl13anc |
|
74 |
58 73
|
eqtr2d |
|
75 |
74
|
mpteq2dva |
|
76 |
11 35 75
|
3eqtrd |
|
77 |
4
|
cmnmndd |
|
78 |
|
mndmgm |
|
79 |
77 78
|
syl |
|
80 |
1 2 79 5 6
|
psdcl |
|
81 |
1 2 79 5 7
|
psdcl |
|
82 |
1 2 36 3 80 81
|
psradd |
|
83 |
1 2 3 79 6 7
|
psraddcl |
|
84 |
1 2 8 5 83
|
psdval |
|
85 |
76 82 84
|
3eqtr4rd |
|