Metamath Proof Explorer


Theorem psgndif

Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses psgndif.p P=BaseSymGrpN
psgndif.s S=pmSgnN
psgndif.z Z=pmSgnNK
Assertion psgndif NFinKNQqP|qK=KZQNK=SQ

Proof

Step Hyp Ref Expression
1 psgndif.p P=BaseSymGrpN
2 psgndif.s S=pmSgnN
3 psgndif.z Z=pmSgnNK
4 eqid ranpmTrspNK=ranpmTrspNK
5 eqid SymGrpNK=SymGrpNK
6 eqid SymGrpN=SymGrpN
7 eqid ranpmTrspN=ranpmTrspN
8 1 4 5 6 7 psgnfix2 NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNr
9 8 imp NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNr
10 9 ad2antrr NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNr
11 1 4 5 6 7 psgndiflemA NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKwrWordranpmTrspNQ=SymGrpNr1w=1r
12 11 imp NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKwrWordranpmTrspNQ=SymGrpNr1w=1r
13 12 3anassrs NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKwrWordranpmTrspNQ=SymGrpNr1w=1r
14 13 adantlrr NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNr1w=1r
15 eqeq1 s=1ws=1r1w=1r
16 15 ad2antll NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1ws=1r1w=1r
17 16 adantr NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNs=1r1w=1r
18 14 17 sylibrd NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNrs=1r
19 18 ralrimiva NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNrs=1r
20 10 19 r19.29imd NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNrs=1r
21 20 rexlimdva2 NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNrs=1r
22 1 4 5 psgnfix1 NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKw
23 22 imp NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKw
24 23 ad2antrr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKQNK=SymGrpNKw
25 simp-4l NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKwNFinKNQqP|qK=K
26 simpr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKwWordranpmTrspNK
27 26 adantr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKwwWordranpmTrspNK
28 simpr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKwQNK=SymGrpNKw
29 simp-4r NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKwrWordranpmTrspN
30 27 28 29 3jca NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKwwWordranpmTrspNKQNK=SymGrpNKwrWordranpmTrspN
31 simpr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrQ=SymGrpNr
32 31 ad2antrr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKwQ=SymGrpNr
33 25 30 32 11 syl3c NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKw1w=1r
34 33 eqcomd NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKw1r=1w
35 34 ex NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrwWordranpmTrspNKQNK=SymGrpNKw1r=1w
36 35 adantlrr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKQNK=SymGrpNKw1r=1w
37 eqeq1 s=1rs=1w1r=1w
38 37 ad2antll NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rs=1w1r=1w
39 38 adantr NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKs=1w1r=1w
40 36 39 sylibrd NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKQNK=SymGrpNKws=1w
41 40 ralrimiva NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKQNK=SymGrpNKws=1w
42 24 41 r19.29imd NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKQNK=SymGrpNKws=1w
43 42 rexlimdva2 NFinKNQqP|qK=KrWordranpmTrspNQ=SymGrpNrs=1rwWordranpmTrspNKQNK=SymGrpNKws=1w
44 21 43 impbid NFinKNQqP|qK=KwWordranpmTrspNKQNK=SymGrpNKws=1wrWordranpmTrspNQ=SymGrpNrs=1r
45 44 iotabidv NFinKNQqP|qK=Kιs|wWordranpmTrspNKQNK=SymGrpNKws=1w=ιs|rWordranpmTrspNQ=SymGrpNrs=1r
46 diffi NFinNKFin
47 46 ad2antrr NFinKNQqP|qK=KNKFin
48 eqid qP|qK=K=qP|qK=K
49 eqid BaseSymGrpNK=BaseSymGrpNK
50 eqid NK=NK
51 1 48 49 50 symgfixelsi KNQqP|qK=KQNKBaseSymGrpNK
52 51 adantll NFinKNQqP|qK=KQNKBaseSymGrpNK
53 5 49 4 3 psgnvalfi NKFinQNKBaseSymGrpNKZQNK=ιs|wWordranpmTrspNKQNK=SymGrpNKws=1w
54 47 52 53 syl2anc NFinKNQqP|qK=KZQNK=ιs|wWordranpmTrspNKQNK=SymGrpNKws=1w
55 simpl NFinKNNFin
56 elrabi QqP|qK=KQP
57 6 1 7 2 psgnvalfi NFinQPSQ=ιs|rWordranpmTrspNQ=SymGrpNrs=1r
58 55 56 57 syl2an NFinKNQqP|qK=KSQ=ιs|rWordranpmTrspNQ=SymGrpNrs=1r
59 45 54 58 3eqtr4d NFinKNQqP|qK=KZQNK=SQ
60 59 ex NFinKNQqP|qK=KZQNK=SQ