| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgndif.p |
|
| 2 |
|
psgndif.s |
|
| 3 |
|
psgndif.z |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
1 4 5 6 7
|
psgnfix2 |
|
| 9 |
8
|
imp |
|
| 10 |
9
|
ad2antrr |
|
| 11 |
1 4 5 6 7
|
psgndiflemA |
|
| 12 |
11
|
imp |
|
| 13 |
12
|
3anassrs |
|
| 14 |
13
|
adantlrr |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
ad2antll |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
sylibrd |
|
| 19 |
18
|
ralrimiva |
|
| 20 |
10 19
|
r19.29imd |
|
| 21 |
20
|
rexlimdva2 |
|
| 22 |
1 4 5
|
psgnfix1 |
|
| 23 |
22
|
imp |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
|
simp-4l |
|
| 26 |
|
simpr |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
|
simp-4r |
|
| 30 |
27 28 29
|
3jca |
|
| 31 |
|
simpr |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
25 30 32 11
|
syl3c |
|
| 34 |
33
|
eqcomd |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
adantlrr |
|
| 37 |
|
eqeq1 |
|
| 38 |
37
|
ad2antll |
|
| 39 |
38
|
adantr |
|
| 40 |
36 39
|
sylibrd |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
24 41
|
r19.29imd |
|
| 43 |
42
|
rexlimdva2 |
|
| 44 |
21 43
|
impbid |
|
| 45 |
44
|
iotabidv |
|
| 46 |
|
diffi |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
1 48 49 50
|
symgfixelsi |
|
| 52 |
51
|
adantll |
|
| 53 |
5 49 4 3
|
psgnvalfi |
|
| 54 |
47 52 53
|
syl2anc |
|
| 55 |
|
simpl |
|
| 56 |
|
elrabi |
|
| 57 |
6 1 7 2
|
psgnvalfi |
|
| 58 |
55 56 57
|
syl2an |
|
| 59 |
45 54 58
|
3eqtr4d |
|
| 60 |
59
|
ex |
|