Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsco2rhm.y | |
|
pwsco2rhm.z | |
||
pwsco2rhm.b | |
||
pwsco2rhm.a | |
||
pwsco2rhm.f | |
||
Assertion | pwsco2rhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsco2rhm.y | |
|
2 | pwsco2rhm.z | |
|
3 | pwsco2rhm.b | |
|
4 | pwsco2rhm.a | |
|
5 | pwsco2rhm.f | |
|
6 | rhmrcl1 | |
|
7 | 5 6 | syl | |
8 | 1 | pwsring | |
9 | 7 4 8 | syl2anc | |
10 | rhmrcl2 | |
|
11 | 5 10 | syl | |
12 | 2 | pwsring | |
13 | 11 4 12 | syl2anc | |
14 | rhmghm | |
|
15 | 5 14 | syl | |
16 | ghmmhm | |
|
17 | 15 16 | syl | |
18 | 1 2 3 4 17 | pwsco2mhm | |
19 | ringgrp | |
|
20 | 9 19 | syl | |
21 | ringgrp | |
|
22 | 13 21 | syl | |
23 | ghmmhmb | |
|
24 | 20 22 23 | syl2anc | |
25 | 18 24 | eleqtrrd | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 29 30 | rhmmhm | |
32 | 5 31 | syl | |
33 | 26 27 28 4 32 | pwsco2mhm | |
34 | eqid | |
|
35 | 1 34 | pwsbas | |
36 | 7 4 35 | syl2anc | |
37 | 36 3 | eqtr4di | |
38 | 29 | ringmgp | |
39 | 7 38 | syl | |
40 | 29 34 | mgpbas | |
41 | 26 40 | pwsbas | |
42 | 39 4 41 | syl2anc | |
43 | 37 42 | eqtr3d | |
44 | 43 | mpteq1d | |
45 | eqidd | |
|
46 | eqidd | |
|
47 | eqid | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | eqid | |
|
51 | 1 29 26 47 48 28 49 50 | pwsmgp | |
52 | 7 4 51 | syl2anc | |
53 | 52 | simpld | |
54 | eqid | |
|
55 | eqid | |
|
56 | eqid | |
|
57 | eqid | |
|
58 | eqid | |
|
59 | 2 30 27 54 55 56 57 58 | pwsmgp | |
60 | 11 4 59 | syl2anc | |
61 | 60 | simpld | |
62 | 52 | simprd | |
63 | 62 | oveqdr | |
64 | 60 | simprd | |
65 | 64 | oveqdr | |
66 | 45 46 53 61 63 65 | mhmpropd | |
67 | 33 44 66 | 3eltr4d | |
68 | 25 67 | jca | |
69 | 47 54 | isrhm | |
70 | 9 13 68 69 | syl21anbrc | |