| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsco2rhm.y |
|
| 2 |
|
pwsco2rhm.z |
|
| 3 |
|
pwsco2rhm.b |
|
| 4 |
|
pwsco2rhm.a |
|
| 5 |
|
pwsco2rhm.f |
|
| 6 |
|
rhmrcl1 |
|
| 7 |
5 6
|
syl |
|
| 8 |
1
|
pwsring |
|
| 9 |
7 4 8
|
syl2anc |
|
| 10 |
|
rhmrcl2 |
|
| 11 |
5 10
|
syl |
|
| 12 |
2
|
pwsring |
|
| 13 |
11 4 12
|
syl2anc |
|
| 14 |
|
rhmghm |
|
| 15 |
5 14
|
syl |
|
| 16 |
|
ghmmhm |
|
| 17 |
15 16
|
syl |
|
| 18 |
1 2 3 4 17
|
pwsco2mhm |
|
| 19 |
|
ringgrp |
|
| 20 |
9 19
|
syl |
|
| 21 |
|
ringgrp |
|
| 22 |
13 21
|
syl |
|
| 23 |
|
ghmmhmb |
|
| 24 |
20 22 23
|
syl2anc |
|
| 25 |
18 24
|
eleqtrrd |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
29 30
|
rhmmhm |
|
| 32 |
5 31
|
syl |
|
| 33 |
26 27 28 4 32
|
pwsco2mhm |
|
| 34 |
|
eqid |
|
| 35 |
1 34
|
pwsbas |
|
| 36 |
7 4 35
|
syl2anc |
|
| 37 |
36 3
|
eqtr4di |
|
| 38 |
29
|
ringmgp |
|
| 39 |
7 38
|
syl |
|
| 40 |
29 34
|
mgpbas |
|
| 41 |
26 40
|
pwsbas |
|
| 42 |
39 4 41
|
syl2anc |
|
| 43 |
37 42
|
eqtr3d |
|
| 44 |
43
|
mpteq1d |
|
| 45 |
|
eqidd |
|
| 46 |
|
eqidd |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
1 29 26 47 48 28 49 50
|
pwsmgp |
|
| 52 |
7 4 51
|
syl2anc |
|
| 53 |
52
|
simpld |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
2 30 27 54 55 56 57 58
|
pwsmgp |
|
| 60 |
11 4 59
|
syl2anc |
|
| 61 |
60
|
simpld |
|
| 62 |
52
|
simprd |
|
| 63 |
62
|
oveqdr |
|
| 64 |
60
|
simprd |
|
| 65 |
64
|
oveqdr |
|
| 66 |
45 46 53 61 63 65
|
mhmpropd |
|
| 67 |
33 44 66
|
3eltr4d |
|
| 68 |
25 67
|
jca |
|
| 69 |
47 54
|
isrhm |
|
| 70 |
9 13 68 69
|
syl21anbrc |
|