Metamath Proof Explorer


Theorem pwsco2rhm

Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pwsco2rhm.y Y=R𝑠A
pwsco2rhm.z Z=S𝑠A
pwsco2rhm.b B=BaseY
pwsco2rhm.a φAV
pwsco2rhm.f φFRRingHomS
Assertion pwsco2rhm φgBFgYRingHomZ

Proof

Step Hyp Ref Expression
1 pwsco2rhm.y Y=R𝑠A
2 pwsco2rhm.z Z=S𝑠A
3 pwsco2rhm.b B=BaseY
4 pwsco2rhm.a φAV
5 pwsco2rhm.f φFRRingHomS
6 rhmrcl1 FRRingHomSRRing
7 5 6 syl φRRing
8 1 pwsring RRingAVYRing
9 7 4 8 syl2anc φYRing
10 rhmrcl2 FRRingHomSSRing
11 5 10 syl φSRing
12 2 pwsring SRingAVZRing
13 11 4 12 syl2anc φZRing
14 rhmghm FRRingHomSFRGrpHomS
15 5 14 syl φFRGrpHomS
16 ghmmhm FRGrpHomSFRMndHomS
17 15 16 syl φFRMndHomS
18 1 2 3 4 17 pwsco2mhm φgBFgYMndHomZ
19 ringgrp YRingYGrp
20 9 19 syl φYGrp
21 ringgrp ZRingZGrp
22 13 21 syl φZGrp
23 ghmmhmb YGrpZGrpYGrpHomZ=YMndHomZ
24 20 22 23 syl2anc φYGrpHomZ=YMndHomZ
25 18 24 eleqtrrd φgBFgYGrpHomZ
26 eqid mulGrpR𝑠A=mulGrpR𝑠A
27 eqid mulGrpS𝑠A=mulGrpS𝑠A
28 eqid BasemulGrpR𝑠A=BasemulGrpR𝑠A
29 eqid mulGrpR=mulGrpR
30 eqid mulGrpS=mulGrpS
31 29 30 rhmmhm FRRingHomSFmulGrpRMndHommulGrpS
32 5 31 syl φFmulGrpRMndHommulGrpS
33 26 27 28 4 32 pwsco2mhm φgBasemulGrpR𝑠AFgmulGrpR𝑠AMndHommulGrpS𝑠A
34 eqid BaseR=BaseR
35 1 34 pwsbas RRingAVBaseRA=BaseY
36 7 4 35 syl2anc φBaseRA=BaseY
37 36 3 eqtr4di φBaseRA=B
38 29 ringmgp RRingmulGrpRMnd
39 7 38 syl φmulGrpRMnd
40 29 34 mgpbas BaseR=BasemulGrpR
41 26 40 pwsbas mulGrpRMndAVBaseRA=BasemulGrpR𝑠A
42 39 4 41 syl2anc φBaseRA=BasemulGrpR𝑠A
43 37 42 eqtr3d φB=BasemulGrpR𝑠A
44 43 mpteq1d φgBFg=gBasemulGrpR𝑠AFg
45 eqidd φBasemulGrpY=BasemulGrpY
46 eqidd φBasemulGrpZ=BasemulGrpZ
47 eqid mulGrpY=mulGrpY
48 eqid BasemulGrpY=BasemulGrpY
49 eqid +mulGrpY=+mulGrpY
50 eqid +mulGrpR𝑠A=+mulGrpR𝑠A
51 1 29 26 47 48 28 49 50 pwsmgp RRingAVBasemulGrpY=BasemulGrpR𝑠A+mulGrpY=+mulGrpR𝑠A
52 7 4 51 syl2anc φBasemulGrpY=BasemulGrpR𝑠A+mulGrpY=+mulGrpR𝑠A
53 52 simpld φBasemulGrpY=BasemulGrpR𝑠A
54 eqid mulGrpZ=mulGrpZ
55 eqid BasemulGrpZ=BasemulGrpZ
56 eqid BasemulGrpS𝑠A=BasemulGrpS𝑠A
57 eqid +mulGrpZ=+mulGrpZ
58 eqid +mulGrpS𝑠A=+mulGrpS𝑠A
59 2 30 27 54 55 56 57 58 pwsmgp SRingAVBasemulGrpZ=BasemulGrpS𝑠A+mulGrpZ=+mulGrpS𝑠A
60 11 4 59 syl2anc φBasemulGrpZ=BasemulGrpS𝑠A+mulGrpZ=+mulGrpS𝑠A
61 60 simpld φBasemulGrpZ=BasemulGrpS𝑠A
62 52 simprd φ+mulGrpY=+mulGrpR𝑠A
63 62 oveqdr φxBasemulGrpYyBasemulGrpYx+mulGrpYy=x+mulGrpR𝑠Ay
64 60 simprd φ+mulGrpZ=+mulGrpS𝑠A
65 64 oveqdr φxBasemulGrpZyBasemulGrpZx+mulGrpZy=x+mulGrpS𝑠Ay
66 45 46 53 61 63 65 mhmpropd φmulGrpYMndHommulGrpZ=mulGrpR𝑠AMndHommulGrpS𝑠A
67 33 44 66 3eltr4d φgBFgmulGrpYMndHommulGrpZ
68 25 67 jca φgBFgYGrpHomZgBFgmulGrpYMndHommulGrpZ
69 47 54 isrhm gBFgYRingHomZYRingZRinggBFgYGrpHomZgBFgmulGrpYMndHommulGrpZ
70 9 13 68 69 syl21anbrc φgBFgYRingHomZ