Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwssplit1.y | |
|
pwssplit1.z | |
||
pwssplit1.b | |
||
pwssplit1.c | |
||
pwssplit1.f | |
||
Assertion | pwssplit1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssplit1.y | |
|
2 | pwssplit1.z | |
|
3 | pwssplit1.b | |
|
4 | pwssplit1.c | |
|
5 | pwssplit1.f | |
|
6 | 1 2 3 4 5 | pwssplit0 | |
7 | simp1 | |
|
8 | simp2 | |
|
9 | simp3 | |
|
10 | 8 9 | ssexd | |
11 | eqid | |
|
12 | 2 11 4 | pwselbasb | |
13 | 7 10 12 | syl2anc | |
14 | 13 | biimpa | |
15 | fvex | |
|
16 | 15 | fconst | |
17 | 16 | a1i | |
18 | simpl1 | |
|
19 | eqid | |
|
20 | 11 19 | mndidcl | |
21 | 18 20 | syl | |
22 | 21 | snssd | |
23 | 17 22 | fssd | |
24 | disjdif | |
|
25 | 24 | a1i | |
26 | fun | |
|
27 | 14 23 25 26 | syl21anc | |
28 | simpl3 | |
|
29 | undif | |
|
30 | 28 29 | sylib | |
31 | unidm | |
|
32 | 31 | a1i | |
33 | 30 32 | feq23d | |
34 | 27 33 | mpbid | |
35 | simpl2 | |
|
36 | 1 11 3 | pwselbasb | |
37 | 18 35 36 | syl2anc | |
38 | 34 37 | mpbird | |
39 | 5 | fvtresfn | |
40 | 38 39 | syl | |
41 | resundir | |
|
42 | ffn | |
|
43 | fnresdm | |
|
44 | 14 42 43 | 3syl | |
45 | disjdifr | |
|
46 | fnconstg | |
|
47 | 15 46 | ax-mp | |
48 | fnresdisj | |
|
49 | 47 48 | mp1i | |
50 | 45 49 | mpbii | |
51 | 44 50 | uneq12d | |
52 | 41 51 | eqtrid | |
53 | un0 | |
|
54 | 52 53 | eqtrdi | |
55 | 40 54 | eqtr2d | |
56 | fveq2 | |
|
57 | 56 | rspceeqv | |
58 | 38 55 57 | syl2anc | |
59 | 58 | ralrimiva | |
60 | dffo3 | |
|
61 | 6 59 60 | sylanbrc | |