Description: The power class of the union of two classes is a subset of the union of their power classes, iff one class is a subclass of the other. Exercise 4.12(l) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | pwssun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 | |
|
2 | pweq | |
|
3 | eqimss | |
|
4 | 2 3 | syl | |
5 | 1 4 | sylbi | |
6 | ssequn1 | |
|
7 | pweq | |
|
8 | eqimss | |
|
9 | 7 8 | syl | |
10 | 6 9 | sylbi | |
11 | 5 10 | orim12i | |
12 | 11 | orcoms | |
13 | ssun | |
|
14 | 12 13 | syl | |
15 | vex | |
|
16 | 15 | snss | |
17 | vex | |
|
18 | 17 | snss | |
19 | unss12 | |
|
20 | 16 18 19 | syl2anb | |
21 | zfpair2 | |
|
22 | 21 | elpw | |
23 | df-pr | |
|
24 | 23 | sseq1i | |
25 | 22 24 | bitr2i | |
26 | 20 25 | sylib | |
27 | ssel | |
|
28 | 26 27 | syl5 | |
29 | 28 | expcomd | |
30 | 29 | imp31 | |
31 | elun | |
|
32 | 30 31 | sylib | |
33 | 21 | elpw | |
34 | 15 17 | prss | |
35 | 33 34 | bitr4i | |
36 | 35 | simprbi | |
37 | 21 | elpw | |
38 | 15 17 | prss | |
39 | 37 38 | bitr4i | |
40 | 39 | simplbi | |
41 | 36 40 | orim12i | |
42 | 32 41 | syl | |
43 | 42 | ord | |
44 | 43 | impancom | |
45 | 44 | ssrdv | |
46 | 45 | exp31 | |
47 | con1b | |
|
48 | 46 47 | imbitrdi | |
49 | 48 | com23 | |
50 | 49 | imp | |
51 | 50 | ssrdv | |
52 | 51 | ex | |
53 | 52 | orrd | |
54 | 14 53 | impbii | |