Metamath Proof Explorer


Theorem pwssun

Description: The power class of the union of two classes is a subset of the union of their power classes, iff one class is a subclass of the other. Exercise 4.12(l) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)

Ref Expression
Assertion pwssun ABBA𝒫AB𝒫A𝒫B

Proof

Step Hyp Ref Expression
1 ssequn2 BAAB=A
2 pweq AB=A𝒫AB=𝒫A
3 eqimss 𝒫AB=𝒫A𝒫AB𝒫A
4 2 3 syl AB=A𝒫AB𝒫A
5 1 4 sylbi BA𝒫AB𝒫A
6 ssequn1 ABAB=B
7 pweq AB=B𝒫AB=𝒫B
8 eqimss 𝒫AB=𝒫B𝒫AB𝒫B
9 7 8 syl AB=B𝒫AB𝒫B
10 6 9 sylbi AB𝒫AB𝒫B
11 5 10 orim12i BAAB𝒫AB𝒫A𝒫AB𝒫B
12 11 orcoms ABBA𝒫AB𝒫A𝒫AB𝒫B
13 ssun 𝒫AB𝒫A𝒫AB𝒫B𝒫AB𝒫A𝒫B
14 12 13 syl ABBA𝒫AB𝒫A𝒫B
15 vex xV
16 15 snss xAxA
17 vex yV
18 17 snss yByB
19 unss12 xAyBxyAB
20 16 18 19 syl2anb xAyBxyAB
21 zfpair2 xyV
22 21 elpw xy𝒫ABxyAB
23 df-pr xy=xy
24 23 sseq1i xyABxyAB
25 22 24 bitr2i xyABxy𝒫AB
26 20 25 sylib xAyBxy𝒫AB
27 ssel 𝒫AB𝒫A𝒫Bxy𝒫ABxy𝒫A𝒫B
28 26 27 syl5 𝒫AB𝒫A𝒫BxAyBxy𝒫A𝒫B
29 28 expcomd 𝒫AB𝒫A𝒫ByBxAxy𝒫A𝒫B
30 29 imp31 𝒫AB𝒫A𝒫ByBxAxy𝒫A𝒫B
31 elun xy𝒫A𝒫Bxy𝒫Axy𝒫B
32 30 31 sylib 𝒫AB𝒫A𝒫ByBxAxy𝒫Axy𝒫B
33 21 elpw xy𝒫AxyA
34 15 17 prss xAyAxyA
35 33 34 bitr4i xy𝒫AxAyA
36 35 simprbi xy𝒫AyA
37 21 elpw xy𝒫BxyB
38 15 17 prss xByBxyB
39 37 38 bitr4i xy𝒫BxByB
40 39 simplbi xy𝒫BxB
41 36 40 orim12i xy𝒫Axy𝒫ByAxB
42 32 41 syl 𝒫AB𝒫A𝒫ByBxAyAxB
43 42 ord 𝒫AB𝒫A𝒫ByBxA¬yAxB
44 43 impancom 𝒫AB𝒫A𝒫ByB¬yAxAxB
45 44 ssrdv 𝒫AB𝒫A𝒫ByB¬yAAB
46 45 exp31 𝒫AB𝒫A𝒫ByB¬yAAB
47 con1b ¬yAAB¬AByA
48 46 47 imbitrdi 𝒫AB𝒫A𝒫ByB¬AByA
49 48 com23 𝒫AB𝒫A𝒫B¬AByByA
50 49 imp 𝒫AB𝒫A𝒫B¬AByByA
51 50 ssrdv 𝒫AB𝒫A𝒫B¬ABBA
52 51 ex 𝒫AB𝒫A𝒫B¬ABBA
53 52 orrd 𝒫AB𝒫A𝒫BABBA
54 14 53 impbii ABBA𝒫AB𝒫A𝒫B