| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
|
| 2 |
|
nncn |
|
| 3 |
|
nncn |
|
| 4 |
|
sqcl |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
sqcld |
|
| 7 |
|
2cn |
|
| 8 |
|
sqcl |
|
| 9 |
|
mulcl |
|
| 10 |
4 8 9
|
syl2anr |
|
| 11 |
|
mulcl |
|
| 12 |
7 10 11
|
sylancr |
|
| 13 |
6 12
|
subcld |
|
| 14 |
8
|
adantr |
|
| 15 |
14
|
sqcld |
|
| 16 |
|
mulcl |
|
| 17 |
16
|
ancoms |
|
| 18 |
|
mulcl |
|
| 19 |
7 17 18
|
sylancr |
|
| 20 |
19
|
sqcld |
|
| 21 |
13 15 20
|
add32d |
|
| 22 |
6 12 20
|
subadd23d |
|
| 23 |
|
sqmul |
|
| 24 |
7 17 23
|
sylancr |
|
| 25 |
|
sq2 |
|
| 26 |
25
|
a1i |
|
| 27 |
|
sqmul |
|
| 28 |
27
|
ancoms |
|
| 29 |
26 28
|
oveq12d |
|
| 30 |
24 29
|
eqtrd |
|
| 31 |
30
|
oveq1d |
|
| 32 |
|
4cn |
|
| 33 |
|
subdir |
|
| 34 |
32 7 10 33
|
mp3an12i |
|
| 35 |
|
2p2e4 |
|
| 36 |
32 7 7 35
|
subaddrii |
|
| 37 |
36
|
oveq1i |
|
| 38 |
34 37
|
eqtr3di |
|
| 39 |
31 38
|
eqtrd |
|
| 40 |
39
|
oveq2d |
|
| 41 |
22 40
|
eqtrd |
|
| 42 |
41
|
oveq1d |
|
| 43 |
21 42
|
eqtrd |
|
| 44 |
|
binom2sub |
|
| 45 |
4 8 44
|
syl2anr |
|
| 46 |
45
|
oveq1d |
|
| 47 |
|
binom2 |
|
| 48 |
4 8 47
|
syl2anr |
|
| 49 |
43 46 48
|
3eqtr4d |
|
| 50 |
49
|
3adant3 |
|
| 51 |
50
|
oveq2d |
|
| 52 |
|
simp3 |
|
| 53 |
4
|
3ad2ant2 |
|
| 54 |
8
|
3ad2ant1 |
|
| 55 |
53 54
|
subcld |
|
| 56 |
52 55
|
sqmuld |
|
| 57 |
17
|
3adant3 |
|
| 58 |
7 57 18
|
sylancr |
|
| 59 |
52 58
|
sqmuld |
|
| 60 |
56 59
|
oveq12d |
|
| 61 |
|
sqcl |
|
| 62 |
61
|
3ad2ant3 |
|
| 63 |
55
|
sqcld |
|
| 64 |
58
|
sqcld |
|
| 65 |
62 63 64
|
adddid |
|
| 66 |
60 65
|
eqtr4d |
|
| 67 |
53 54
|
addcld |
|
| 68 |
52 67
|
sqmuld |
|
| 69 |
51 66 68
|
3eqtr4d |
|
| 70 |
1 2 3 69
|
syl3an |
|
| 71 |
|
oveq1 |
|
| 72 |
|
oveq1 |
|
| 73 |
71 72
|
oveqan12d |
|
| 74 |
73
|
3adant3 |
|
| 75 |
|
oveq1 |
|
| 76 |
75
|
3ad2ant3 |
|
| 77 |
74 76
|
eqeq12d |
|
| 78 |
70 77
|
syl5ibrcom |
|
| 79 |
78
|
3expa |
|
| 80 |
79
|
rexlimdva |
|
| 81 |
80
|
rexlimivv |
|