Metamath Proof Explorer


Theorem pythagtriplem1

Description: Lemma for pythagtrip . Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem1 nmkA=km2n2B=k2mnC=km2+n2A2+B2=C2

Proof

Step Hyp Ref Expression
1 nncn nn
2 nncn mm
3 nncn kk
4 sqcl mm2
5 4 adantl nmm2
6 5 sqcld nmm22
7 2cn 2
8 sqcl nn2
9 mulcl m2n2m2n2
10 4 8 9 syl2anr nmm2n2
11 mulcl 2m2n22m2n2
12 7 10 11 sylancr nm2m2n2
13 6 12 subcld nmm222m2n2
14 8 adantr nmn2
15 14 sqcld nmn22
16 mulcl mnmn
17 16 ancoms nmmn
18 mulcl 2mn2mn
19 7 17 18 sylancr nm2mn
20 19 sqcld nm2mn2
21 13 15 20 add32d nmm222m2n2+n22+2mn2=m222m2n2+2mn2+n22
22 6 12 20 subadd23d nmm22-2m2n2+2mn2=m22+2mn2-2m2n2
23 sqmul 2mn2mn2=22mn2
24 7 17 23 sylancr nm2mn2=22mn2
25 sq2 22=4
26 25 a1i nm22=4
27 sqmul mnmn2=m2n2
28 27 ancoms nmmn2=m2n2
29 26 28 oveq12d nm22mn2=4m2n2
30 24 29 eqtrd nm2mn2=4m2n2
31 30 oveq1d nm2mn22m2n2=4m2n22m2n2
32 4cn 4
33 subdir 42m2n242m2n2=4m2n22m2n2
34 32 7 10 33 mp3an12i nm42m2n2=4m2n22m2n2
35 2p2e4 2+2=4
36 32 7 7 35 subaddrii 42=2
37 36 oveq1i 42m2n2=2m2n2
38 34 37 eqtr3di nm4m2n22m2n2=2m2n2
39 31 38 eqtrd nm2mn22m2n2=2m2n2
40 39 oveq2d nmm22+2mn2-2m2n2=m22+2m2n2
41 22 40 eqtrd nmm22-2m2n2+2mn2=m22+2m2n2
42 41 oveq1d nmm222m2n2+2mn2+n22=m22+2m2n2+n22
43 21 42 eqtrd nmm222m2n2+n22+2mn2=m22+2m2n2+n22
44 binom2sub m2n2m2n22=m22-2m2n2+n22
45 4 8 44 syl2anr nmm2n22=m22-2m2n2+n22
46 45 oveq1d nmm2n22+2mn2=m222m2n2+n22+2mn2
47 binom2 m2n2m2+n22=m22+2m2n2+n22
48 4 8 47 syl2anr nmm2+n22=m22+2m2n2+n22
49 43 46 48 3eqtr4d nmm2n22+2mn2=m2+n22
50 49 3adant3 nmkm2n22+2mn2=m2+n22
51 50 oveq2d nmkk2m2n22+2mn2=k2m2+n22
52 simp3 nmkk
53 4 3ad2ant2 nmkm2
54 8 3ad2ant1 nmkn2
55 53 54 subcld nmkm2n2
56 52 55 sqmuld nmkkm2n22=k2m2n22
57 17 3adant3 nmkmn
58 7 57 18 sylancr nmk2mn
59 52 58 sqmuld nmkk2mn2=k22mn2
60 56 59 oveq12d nmkkm2n22+k2mn2=k2m2n22+k22mn2
61 sqcl kk2
62 61 3ad2ant3 nmkk2
63 55 sqcld nmkm2n22
64 58 sqcld nmk2mn2
65 62 63 64 adddid nmkk2m2n22+2mn2=k2m2n22+k22mn2
66 60 65 eqtr4d nmkkm2n22+k2mn2=k2m2n22+2mn2
67 53 54 addcld nmkm2+n2
68 52 67 sqmuld nmkkm2+n22=k2m2+n22
69 51 66 68 3eqtr4d nmkkm2n22+k2mn2=km2+n22
70 1 2 3 69 syl3an nmkkm2n22+k2mn2=km2+n22
71 oveq1 A=km2n2A2=km2n22
72 oveq1 B=k2mnB2=k2mn2
73 71 72 oveqan12d A=km2n2B=k2mnA2+B2=km2n22+k2mn2
74 73 3adant3 A=km2n2B=k2mnC=km2+n2A2+B2=km2n22+k2mn2
75 oveq1 C=km2+n2C2=km2+n22
76 75 3ad2ant3 A=km2n2B=k2mnC=km2+n2C2=km2+n22
77 74 76 eqeq12d A=km2n2B=k2mnC=km2+n2A2+B2=C2km2n22+k2mn2=km2+n22
78 70 77 syl5ibrcom nmkA=km2n2B=k2mnC=km2+n2A2+B2=C2
79 78 3expa nmkA=km2n2B=k2mnC=km2+n2A2+B2=C2
80 79 rexlimdva nmkA=km2n2B=k2mnC=km2+n2A2+B2=C2
81 80 rexlimivv nmkA=km2n2B=k2mnC=km2+n2A2+B2=C2