Metamath Proof Explorer


Theorem pythagtriplem6

Description: Lemma for pythagtrip . Calculate ( sqrt( C - B ) ) . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem6 ABCA2+B2=C2AgcdB=1¬2ACB=CBgcdA

Proof

Step Hyp Ref Expression
1 nnz CC
2 1 3ad2ant3 ABCC
3 nnz BB
4 3 3ad2ant2 ABCB
5 2 4 zsubcld ABCCB
6 5 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACB
7 pythagtriplem10 ABCA2+B2=C20<CB
8 7 3adant3 ABCA2+B2=C2AgcdB=1¬2A0<CB
9 elnnz CBCB0<CB
10 6 8 9 sylanbrc ABCA2+B2=C2AgcdB=1¬2ACB
11 10 nnnn0d ABCA2+B2=C2AgcdB=1¬2ACB0
12 simp3 ABCC
13 simp2 ABCB
14 12 13 nnaddcld ABCC+B
15 14 nnzd ABCC+B
16 15 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B
17 nnnn0 AA0
18 17 3ad2ant1 ABCA0
19 18 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA0
20 11 16 19 3jca ABCA2+B2=C2AgcdB=1¬2ACB0C+BA0
21 pythagtriplem4 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=1
22 21 oveq1d ABCA2+B2=C2AgcdB=1¬2ACBgcdC+BgcdA=1gcdA
23 nnz AA
24 23 3ad2ant1 ABCA
25 24 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
26 1gcd A1gcdA=1
27 25 26 syl ABCA2+B2=C2AgcdB=1¬2A1gcdA=1
28 22 27 eqtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+BgcdA=1
29 20 28 jca ABCA2+B2=C2AgcdB=1¬2ACB0C+BA0CBgcdC+BgcdA=1
30 oveq1 A2+B2=C2A2+B2-B2=C2B2
31 30 3ad2ant2 ABCA2+B2=C2AgcdB=1¬2AA2+B2-B2=C2B2
32 24 zcnd ABCA
33 32 sqcld ABCA2
34 nncn BB
35 34 3ad2ant2 ABCB
36 35 sqcld ABCB2
37 33 36 pncand ABCA2+B2-B2=A2
38 37 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA2+B2-B2=A2
39 nncn CC
40 39 3ad2ant3 ABCC
41 subsq CBC2B2=C+BCB
42 40 35 41 syl2anc ABCC2B2=C+BCB
43 14 nncnd ABCC+B
44 5 zcnd ABCCB
45 43 44 mulcomd ABCC+BCB=CBC+B
46 42 45 eqtrd ABCC2B2=CBC+B
47 46 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC2B2=CBC+B
48 31 38 47 3eqtr3d ABCA2+B2=C2AgcdB=1¬2AA2=CBC+B
49 coprimeprodsq CB0C+BA0CBgcdC+BgcdA=1A2=CBC+BCB=CBgcdA2
50 29 48 49 sylc ABCA2+B2=C2AgcdB=1¬2ACB=CBgcdA2
51 50 fveq2d ABCA2+B2=C2AgcdB=1¬2ACB=CBgcdA2
52 6 25 gcdcld ABCA2+B2=C2AgcdB=1¬2ACBgcdA0
53 52 nn0red ABCA2+B2=C2AgcdB=1¬2ACBgcdA
54 52 nn0ge0d ABCA2+B2=C2AgcdB=1¬2A0CBgcdA
55 53 54 sqrtsqd ABCA2+B2=C2AgcdB=1¬2ACBgcdA2=CBgcdA
56 51 55 eqtrd ABCA2+B2=C2AgcdB=1¬2ACB=CBgcdA