Description: Lemma for pythagtrip . Calculate ( sqrt( C - B ) ) . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pythagtriplem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | |
|
2 | 1 | 3ad2ant3 | |
3 | nnz | |
|
4 | 3 | 3ad2ant2 | |
5 | 2 4 | zsubcld | |
6 | 5 | 3ad2ant1 | |
7 | pythagtriplem10 | |
|
8 | 7 | 3adant3 | |
9 | elnnz | |
|
10 | 6 8 9 | sylanbrc | |
11 | 10 | nnnn0d | |
12 | simp3 | |
|
13 | simp2 | |
|
14 | 12 13 | nnaddcld | |
15 | 14 | nnzd | |
16 | 15 | 3ad2ant1 | |
17 | nnnn0 | |
|
18 | 17 | 3ad2ant1 | |
19 | 18 | 3ad2ant1 | |
20 | 11 16 19 | 3jca | |
21 | pythagtriplem4 | |
|
22 | 21 | oveq1d | |
23 | nnz | |
|
24 | 23 | 3ad2ant1 | |
25 | 24 | 3ad2ant1 | |
26 | 1gcd | |
|
27 | 25 26 | syl | |
28 | 22 27 | eqtrd | |
29 | 20 28 | jca | |
30 | oveq1 | |
|
31 | 30 | 3ad2ant2 | |
32 | 24 | zcnd | |
33 | 32 | sqcld | |
34 | nncn | |
|
35 | 34 | 3ad2ant2 | |
36 | 35 | sqcld | |
37 | 33 36 | pncand | |
38 | 37 | 3ad2ant1 | |
39 | nncn | |
|
40 | 39 | 3ad2ant3 | |
41 | subsq | |
|
42 | 40 35 41 | syl2anc | |
43 | 14 | nncnd | |
44 | 5 | zcnd | |
45 | 43 44 | mulcomd | |
46 | 42 45 | eqtrd | |
47 | 46 | 3ad2ant1 | |
48 | 31 38 47 | 3eqtr3d | |
49 | coprimeprodsq | |
|
50 | 29 48 49 | sylc | |
51 | 50 | fveq2d | |
52 | 6 25 | gcdcld | |
53 | 52 | nn0red | |
54 | 52 | nn0ge0d | |
55 | 53 54 | sqrtsqd | |
56 | 51 55 | eqtrd | |