| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|
| 2 |
|
pzriprng.i |
|
| 3 |
|
pzriprng.j |
|
| 4 |
|
pzriprng.1 |
|
| 5 |
|
pzriprng.g |
|
| 6 |
|
pzriprng.q |
|
| 7 |
1 2 3 4 5 6
|
pzriprnglem11 |
|
| 8 |
7
|
eleq2i |
|
| 9 |
|
eliun |
|
| 10 |
8 9
|
bitri |
|
| 11 |
|
elsni |
|
| 12 |
|
1z |
|
| 13 |
1 2 3 4 5
|
pzriprnglem10 |
|
| 14 |
12 13
|
mpan |
|
| 15 |
14
|
eqcomd |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
1
|
pzriprnglem1 |
|
| 18 |
17
|
a1i |
|
| 19 |
1 2 3
|
pzriprnglem8 |
|
| 20 |
19
|
a1i |
|
| 21 |
1 2
|
pzriprnglem4 |
|
| 22 |
21
|
a1i |
|
| 23 |
12
|
a1i |
|
| 24 |
23 23
|
opelxpd |
|
| 25 |
|
id |
|
| 26 |
23 25
|
opelxpd |
|
| 27 |
1
|
pzriprnglem2 |
|
| 28 |
27
|
eqcomi |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
5 6 28 29 30
|
qusmulrng |
|
| 32 |
18 20 22 24 26 31
|
syl32anc |
|
| 33 |
|
zringbas |
|
| 34 |
|
zringring |
|
| 35 |
34
|
a1i |
|
| 36 |
23 23
|
zmulcld |
|
| 37 |
23 25
|
zmulcld |
|
| 38 |
|
zringmulr |
|
| 39 |
1 33 33 35 35 23 23 23 25 36 37 38 38 29
|
xpsmul |
|
| 40 |
|
1cnd |
|
| 41 |
40
|
mulridd |
|
| 42 |
|
zcn |
|
| 43 |
42
|
mullidd |
|
| 44 |
41 43
|
opeq12d |
|
| 45 |
39 44
|
eqtrd |
|
| 46 |
45
|
eceq1d |
|
| 47 |
32 46
|
eqtrd |
|
| 48 |
5 6 28 29 30
|
qusmulrng |
|
| 49 |
18 20 22 26 24 48
|
syl32anc |
|
| 50 |
25 23
|
zmulcld |
|
| 51 |
1 33 33 35 35 23 25 23 23 36 50 38 38 29
|
xpsmul |
|
| 52 |
42
|
mulridd |
|
| 53 |
41 52
|
opeq12d |
|
| 54 |
51 53
|
eqtrd |
|
| 55 |
54
|
eceq1d |
|
| 56 |
49 55
|
eqtrd |
|
| 57 |
47 56
|
jca |
|
| 58 |
1 2 3 4 5
|
pzriprnglem10 |
|
| 59 |
12 12 58
|
mp2an |
|
| 60 |
59
|
eqcomi |
|
| 61 |
60
|
a1i |
|
| 62 |
|
id |
|
| 63 |
61 62
|
oveq12d |
|
| 64 |
63 62
|
eqeq12d |
|
| 65 |
62 61
|
oveq12d |
|
| 66 |
65 62
|
eqeq12d |
|
| 67 |
64 66
|
anbi12d |
|
| 68 |
57 67
|
syl5ibrcom |
|
| 69 |
16 68
|
sylbid |
|
| 70 |
11 69
|
syl5 |
|
| 71 |
70
|
rexlimiv |
|
| 72 |
10 71
|
sylbi |
|