Metamath Proof Explorer


Theorem pzriprnglem12

Description: Lemma 12 for pzriprng : Q has a ring unity. (Contributed by AV, 23-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
pzriprng.1 1˙=1J
pzriprng.g ˙=R~QGI
pzriprng.q Q=R/𝑠˙
Assertion pzriprnglem12 XBaseQ×1QX=XXQ×1=X

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 pzriprng.1 1˙=1J
5 pzriprng.g ˙=R~QGI
6 pzriprng.q Q=R/𝑠˙
7 1 2 3 4 5 6 pzriprnglem11 BaseQ=y×y
8 7 eleq2i XBaseQXy×y
9 eliun Xy×yyX×y
10 8 9 bitri XBaseQyX×y
11 elsni X×yX=×y
12 1z 1
13 1 2 3 4 5 pzriprnglem10 1y1y˙=×y
14 12 13 mpan y1y˙=×y
15 14 eqcomd y×y=1y˙
16 15 eqeq2d yX=×yX=1y˙
17 1 pzriprnglem1 RRng
18 17 a1i yRRng
19 1 2 3 pzriprnglem8 I2IdealR
20 19 a1i yI2IdealR
21 1 2 pzriprnglem4 ISubGrpR
22 21 a1i yISubGrpR
23 12 a1i y1
24 23 23 opelxpd y11×
25 id yy
26 23 25 opelxpd y1y×
27 1 pzriprnglem2 BaseR=×
28 27 eqcomi ×=BaseR
29 eqid R=R
30 eqid Q=Q
31 5 6 28 29 30 qusmulrng RRngI2IdealRISubGrpR11×1y×11˙Q1y˙=11R1y˙
32 18 20 22 24 26 31 syl32anc y11˙Q1y˙=11R1y˙
33 zringbas =Basering
34 zringring ringRing
35 34 a1i yringRing
36 23 23 zmulcld y11
37 23 25 zmulcld y1y
38 zringmulr ×=ring
39 1 33 33 35 35 23 23 23 25 36 37 38 38 29 xpsmul y11R1y=111y
40 1cnd y1
41 40 mulridd y11=1
42 zcn yy
43 42 mullidd y1y=y
44 41 43 opeq12d y111y=1y
45 39 44 eqtrd y11R1y=1y
46 45 eceq1d y11R1y˙=1y˙
47 32 46 eqtrd y11˙Q1y˙=1y˙
48 5 6 28 29 30 qusmulrng RRngI2IdealRISubGrpR1y×11×1y˙Q11˙=1yR11˙
49 18 20 22 26 24 48 syl32anc y1y˙Q11˙=1yR11˙
50 25 23 zmulcld yy1
51 1 33 33 35 35 23 25 23 23 36 50 38 38 29 xpsmul y1yR11=11y1
52 42 mulridd yy1=y
53 41 52 opeq12d y11y1=1y
54 51 53 eqtrd y1yR11=1y
55 54 eceq1d y1yR11˙=1y˙
56 49 55 eqtrd y1y˙Q11˙=1y˙
57 47 56 jca y11˙Q1y˙=1y˙1y˙Q11˙=1y˙
58 1 2 3 4 5 pzriprnglem10 1111˙=×1
59 12 12 58 mp2an 11˙=×1
60 59 eqcomi ×1=11˙
61 60 a1i X=1y˙×1=11˙
62 id X=1y˙X=1y˙
63 61 62 oveq12d X=1y˙×1QX=11˙Q1y˙
64 63 62 eqeq12d X=1y˙×1QX=X11˙Q1y˙=1y˙
65 62 61 oveq12d X=1y˙XQ×1=1y˙Q11˙
66 65 62 eqeq12d X=1y˙XQ×1=X1y˙Q11˙=1y˙
67 64 66 anbi12d X=1y˙×1QX=XXQ×1=X11˙Q1y˙=1y˙1y˙Q11˙=1y˙
68 57 67 syl5ibrcom yX=1y˙×1QX=XXQ×1=X
69 16 68 sylbid yX=×y×1QX=XXQ×1=X
70 11 69 syl5 yX×y×1QX=XXQ×1=X
71 70 rexlimiv yX×y×1QX=XXQ×1=X
72 10 71 sylbi XBaseQ×1QX=XXQ×1=X