Metamath Proof Explorer


Theorem q1pvsca

Description: Scalar multiplication property of the polynomial division. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P=Poly1R
r1padd1.u U=BaseP
r1padd1.n N=Unic1pR
q1pdir.d ×˙=quot1pR
q1pdir.r φRRing
q1pdir.a φAU
q1pdir.c φCN
q1pvsca.1 ×˙=P
q1pvsca.k K=BaseR
q1pvsca.8 φBK
Assertion q1pvsca φB×˙A×˙C=B×˙A×˙C

Proof

Step Hyp Ref Expression
1 r1padd1.p P=Poly1R
2 r1padd1.u U=BaseP
3 r1padd1.n N=Unic1pR
4 q1pdir.d ×˙=quot1pR
5 q1pdir.r φRRing
6 q1pdir.a φAU
7 q1pdir.c φCN
8 q1pvsca.1 ×˙=P
9 q1pvsca.k K=BaseR
10 q1pvsca.8 φBK
11 eqid ScalarP=ScalarP
12 eqid BaseScalarP=BaseScalarP
13 1 ply1lmod RRingPLMod
14 5 13 syl φPLMod
15 1 ply1sca RRingR=ScalarP
16 5 15 syl φR=ScalarP
17 16 fveq2d φBaseR=BaseScalarP
18 9 17 eqtrid φK=BaseScalarP
19 10 18 eleqtrd φBBaseScalarP
20 2 11 8 12 14 19 6 lmodvscld φB×˙AU
21 4 1 2 3 q1pcl RRingAUCNA×˙CU
22 5 6 7 21 syl3anc φA×˙CU
23 2 11 8 12 14 19 22 lmodvscld φB×˙A×˙CU
24 14 lmodgrpd φPGrp
25 eqid P=P
26 1 ply1ring RRingPRing
27 5 26 syl φPRing
28 1 2 3 uc1pcl CNCU
29 7 28 syl φCU
30 2 25 27 23 29 ringcld φB×˙A×˙CPCU
31 eqid -P=-P
32 2 31 grpsubcl PGrpB×˙AUB×˙A×˙CPCUB×˙A-PB×˙A×˙CPCU
33 24 20 30 32 syl3anc φB×˙A-PB×˙A×˙CPCU
34 eqid deg1R=deg1R
35 34 1 2 deg1xrcl B×˙A-PB×˙A×˙CPCUdeg1RB×˙A-PB×˙A×˙CPC*
36 33 35 syl φdeg1RB×˙A-PB×˙A×˙CPC*
37 eqid rem1pR=rem1pR
38 37 1 2 4 25 31 r1pval AUCUArem1pRC=A-PA×˙CPC
39 6 29 38 syl2anc φArem1pRC=A-PA×˙CPC
40 2 25 27 22 29 ringcld φA×˙CPCU
41 2 31 grpsubcl PGrpAUA×˙CPCUA-PA×˙CPCU
42 24 6 40 41 syl3anc φA-PA×˙CPCU
43 39 42 eqeltrd φArem1pRCU
44 34 1 2 deg1xrcl Arem1pRCUdeg1RArem1pRC*
45 43 44 syl φdeg1RArem1pRC*
46 34 1 2 deg1xrcl CUdeg1RC*
47 29 46 syl φdeg1RC*
48 1 34 5 2 9 8 10 42 deg1vscale φdeg1RB×˙A-PA×˙CPCdeg1RA-PA×˙CPC
49 1 25 2 9 8 ply1ass23l RRingBKA×˙CUCUB×˙A×˙CPC=B×˙A×˙CPC
50 5 10 22 29 49 syl13anc φB×˙A×˙CPC=B×˙A×˙CPC
51 50 oveq2d φB×˙A-PB×˙A×˙CPC=B×˙A-PB×˙A×˙CPC
52 2 8 11 12 31 14 19 6 40 lmodsubdi φB×˙A-PA×˙CPC=B×˙A-PB×˙A×˙CPC
53 51 52 eqtr4d φB×˙A-PB×˙A×˙CPC=B×˙A-PA×˙CPC
54 53 fveq2d φdeg1RB×˙A-PB×˙A×˙CPC=deg1RB×˙A-PA×˙CPC
55 39 fveq2d φdeg1RArem1pRC=deg1RA-PA×˙CPC
56 48 54 55 3brtr4d φdeg1RB×˙A-PB×˙A×˙CPCdeg1RArem1pRC
57 37 1 2 3 34 r1pdeglt RRingAUCNdeg1RArem1pRC<deg1RC
58 5 6 7 57 syl3anc φdeg1RArem1pRC<deg1RC
59 36 45 47 56 58 xrlelttrd φdeg1RB×˙A-PB×˙A×˙CPC<deg1RC
60 4 1 2 34 31 25 3 q1peqb RRingB×˙AUCNB×˙A×˙CUdeg1RB×˙A-PB×˙A×˙CPC<deg1RCB×˙A×˙C=B×˙A×˙C
61 60 biimpa RRingB×˙AUCNB×˙A×˙CUdeg1RB×˙A-PB×˙A×˙CPC<deg1RCB×˙A×˙C=B×˙A×˙C
62 5 20 7 23 59 61 syl32anc φB×˙A×˙C=B×˙A×˙C