Metamath Proof Explorer


Theorem qbtwnre

Description: The rational numbers are dense in RR : any two real numbers have a rational between them. Exercise 6 of Apostol p. 28. (Contributed by NM, 18-Nov-2004) (Proof shortened by Mario Carneiro, 13-Jun-2014)

Ref Expression
Assertion qbtwnre ABA<BxA<xx<B

Proof

Step Hyp Ref Expression
1 posdif ABA<B0<BA
2 resubcl BABA
3 nnrecl BA0<BAy1y<BA
4 2 3 sylan BA0<BAy1y<BA
5 4 ex BA0<BAy1y<BA
6 5 ancoms AB0<BAy1y<BA
7 1 6 sylbid ABA<By1y<BA
8 nnre yy
9 8 adantl AByy
10 simplr AByB
11 9 10 remulcld AByyB
12 peano2rem yByB1
13 11 12 syl AByyB1
14 zbtwnre yB1∃!zyB1zz<yB-1+1
15 reurex ∃!zyB1zz<yB-1+1zyB1zz<yB-1+1
16 13 14 15 3syl AByzyB1zz<yB-1+1
17 znq zyzy
18 17 ancoms yzzy
19 18 adantl AByzzy
20 an32 yB1zz<yB-1+11y<BAyB1z1y<BAz<yB-1+1
21 8 ad2antrl AByzy
22 simpll AByzA
23 21 22 remulcld AByzyA
24 13 adantrr AByzyB1
25 zre zz
26 25 ad2antll AByzz
27 ltletr yAyB1zyA<yB1yB1zyA<z
28 23 24 26 27 syl3anc AByzyA<yB1yB1zyA<z
29 21 recnd AByzy
30 simplr AByzB
31 30 recnd AByzB
32 22 recnd AByzA
33 29 31 32 subdid AByzyBA=yByA
34 33 breq2d AByz1<yBA1<yByA
35 1red AByz1
36 30 22 resubcld AByzBA
37 nngt0 y0<y
38 37 ad2antrl AByz0<y
39 ltdivmul 1BAy0<y1y<BA1<yBA
40 35 36 21 38 39 syl112anc AByz1y<BA1<yBA
41 11 adantrr AByzyB
42 ltsub13 yAyB1yA<yB11<yByA
43 23 41 35 42 syl3anc AByzyA<yB11<yByA
44 34 40 43 3bitr4rd AByzyA<yB11y<BA
45 44 anbi1d AByzyA<yB1yB1z1y<BAyB1z
46 45 biancomd AByzyA<yB1yB1zyB1z1y<BA
47 ltmuldiv2 Azy0<yyA<zA<zy
48 22 26 21 38 47 syl112anc AByzyA<zA<zy
49 28 46 48 3imtr3d AByzyB1z1y<BAA<zy
50 41 recnd AByzyB
51 ax-1cn 1
52 npcan yB1yB-1+1=yB
53 50 51 52 sylancl AByzyB-1+1=yB
54 53 breq2d AByzz<yB-1+1z<yB
55 ltdivmul zBy0<yzy<Bz<yB
56 26 30 21 38 55 syl112anc AByzzy<Bz<yB
57 54 56 bitr4d AByzz<yB-1+1zy<B
58 57 biimpd AByzz<yB-1+1zy<B
59 49 58 anim12d AByzyB1z1y<BAz<yB-1+1A<zyzy<B
60 20 59 biimtrid AByzyB1zz<yB-1+11y<BAA<zyzy<B
61 breq2 x=zyA<xA<zy
62 breq1 x=zyx<Bzy<B
63 61 62 anbi12d x=zyA<xx<BA<zyzy<B
64 63 rspcev zyA<zyzy<BxA<xx<B
65 19 60 64 syl6an AByzyB1zz<yB-1+11y<BAxA<xx<B
66 65 expd AByzyB1zz<yB-1+11y<BAxA<xx<B
67 66 expr AByzyB1zz<yB-1+11y<BAxA<xx<B
68 67 rexlimdv AByzyB1zz<yB-1+11y<BAxA<xx<B
69 16 68 mpd ABy1y<BAxA<xx<B
70 69 rexlimdva ABy1y<BAxA<xx<B
71 7 70 syld ABA<BxA<xx<B
72 71 3impia ABA<BxA<xx<B