| Step |
Hyp |
Ref |
Expression |
| 1 |
|
posdif |
|
| 2 |
|
resubcl |
|
| 3 |
|
nnrecl |
|
| 4 |
2 3
|
sylan |
|
| 5 |
4
|
ex |
|
| 6 |
5
|
ancoms |
|
| 7 |
1 6
|
sylbid |
|
| 8 |
|
nnre |
|
| 9 |
8
|
adantl |
|
| 10 |
|
simplr |
|
| 11 |
9 10
|
remulcld |
|
| 12 |
|
peano2rem |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
zbtwnre |
|
| 15 |
|
reurex |
|
| 16 |
13 14 15
|
3syl |
|
| 17 |
|
znq |
|
| 18 |
17
|
ancoms |
|
| 19 |
18
|
adantl |
|
| 20 |
|
an32 |
|
| 21 |
8
|
ad2antrl |
|
| 22 |
|
simpll |
|
| 23 |
21 22
|
remulcld |
|
| 24 |
13
|
adantrr |
|
| 25 |
|
zre |
|
| 26 |
25
|
ad2antll |
|
| 27 |
|
ltletr |
|
| 28 |
23 24 26 27
|
syl3anc |
|
| 29 |
21
|
recnd |
|
| 30 |
|
simplr |
|
| 31 |
30
|
recnd |
|
| 32 |
22
|
recnd |
|
| 33 |
29 31 32
|
subdid |
|
| 34 |
33
|
breq2d |
|
| 35 |
|
1red |
|
| 36 |
30 22
|
resubcld |
|
| 37 |
|
nngt0 |
|
| 38 |
37
|
ad2antrl |
|
| 39 |
|
ltdivmul |
|
| 40 |
35 36 21 38 39
|
syl112anc |
|
| 41 |
11
|
adantrr |
|
| 42 |
|
ltsub13 |
|
| 43 |
23 41 35 42
|
syl3anc |
|
| 44 |
34 40 43
|
3bitr4rd |
|
| 45 |
44
|
anbi1d |
|
| 46 |
45
|
biancomd |
|
| 47 |
|
ltmuldiv2 |
|
| 48 |
22 26 21 38 47
|
syl112anc |
|
| 49 |
28 46 48
|
3imtr3d |
|
| 50 |
41
|
recnd |
|
| 51 |
|
ax-1cn |
|
| 52 |
|
npcan |
|
| 53 |
50 51 52
|
sylancl |
|
| 54 |
53
|
breq2d |
|
| 55 |
|
ltdivmul |
|
| 56 |
26 30 21 38 55
|
syl112anc |
|
| 57 |
54 56
|
bitr4d |
|
| 58 |
57
|
biimpd |
|
| 59 |
49 58
|
anim12d |
|
| 60 |
20 59
|
biimtrid |
|
| 61 |
|
breq2 |
|
| 62 |
|
breq1 |
|
| 63 |
61 62
|
anbi12d |
|
| 64 |
63
|
rspcev |
|
| 65 |
19 60 64
|
syl6an |
|
| 66 |
65
|
expd |
|
| 67 |
66
|
expr |
|
| 68 |
67
|
rexlimdv |
|
| 69 |
16 68
|
mpd |
|
| 70 |
69
|
rexlimdva |
|
| 71 |
7 70
|
syld |
|
| 72 |
71
|
3impia |
|