Metamath Proof Explorer


Theorem qndenserrnbl

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnbl.i φIFin
qndenserrnbl.x φXI
qndenserrnbl.d D=distmsup
qndenserrnbl.e φE+
Assertion qndenserrnbl φyIyXballDE

Proof

Step Hyp Ref Expression
1 qndenserrnbl.i φIFin
2 qndenserrnbl.x φXI
3 qndenserrnbl.d D=distmsup
4 qndenserrnbl.e φE+
5 0ex V
6 5 snid
7 6 a1i φI=
8 oveq2 I=I=
9 qex V
10 mapdm0 V=
11 9 10 ax-mp =
12 11 a1i I==
13 8 12 eqtr2d I==I
14 13 adantl φI==I
15 7 14 eleqtrd φI=I
16 3 rrxmetfi IFinDMetI
17 1 16 syl φDMetI
18 metxmet DMetID∞MetI
19 17 18 syl φD∞MetI
20 19 adantr φI=D∞MetI
21 2 adantr φI=XI
22 oveq2 I=I=
23 reex V
24 mapdm0 V=
25 23 24 ax-mp =
26 25 a1i I==
27 22 26 eqtrd I=I=
28 27 adantl φI=I=
29 21 28 eleqtrd φI=X
30 elsng XIXX=
31 2 30 syl φXX=
32 31 adantr φI=XX=
33 29 32 mpbid φI=X=
34 33 eqcomd φI==X
35 34 21 eqeltrd φI=I
36 4 rpxrd φE*
37 4 rpgt0d φ0<E
38 36 37 jca φE*0<E
39 38 adantr φI=E*0<E
40 xblcntr D∞MetIIE*0<EballDE
41 20 35 39 40 syl3anc φI=ballDE
42 34 oveq1d φI=ballDE=XballDE
43 41 42 eleqtrd φI=XballDE
44 eleq1 y=yXballDEXballDE
45 44 rspcev IXballDEyIyXballDE
46 15 43 45 syl2anc φI=yIyXballDE
47 1 adantr φ¬I=IFin
48 neqne ¬I=I
49 48 adantl φ¬I=I
50 2 adantr φ¬I=XI
51 4 adantr φ¬I=E+
52 47 49 50 3 51 qndenserrnbllem φ¬I=yIyXballDE
53 46 52 pm2.61dan φyIyXballDE