Metamath Proof Explorer


Theorem qndenserrnbl

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnbl.i φ I Fin
qndenserrnbl.x φ X I
qndenserrnbl.d D = dist I
qndenserrnbl.e φ E +
Assertion qndenserrnbl φ y I y X ball D E

Proof

Step Hyp Ref Expression
1 qndenserrnbl.i φ I Fin
2 qndenserrnbl.x φ X I
3 qndenserrnbl.d D = dist I
4 qndenserrnbl.e φ E +
5 0ex V
6 5 snid
7 6 a1i φ I =
8 oveq2 I = I =
9 qex V
10 mapdm0 V =
11 9 10 ax-mp =
12 11 a1i I = =
13 8 12 eqtr2d I = = I
14 13 adantl φ I = = I
15 7 14 eleqtrd φ I = I
16 3 rrxmetfi I Fin D Met I
17 1 16 syl φ D Met I
18 metxmet D Met I D ∞Met I
19 17 18 syl φ D ∞Met I
20 19 adantr φ I = D ∞Met I
21 2 adantr φ I = X I
22 oveq2 I = I =
23 reex V
24 mapdm0 V =
25 23 24 ax-mp =
26 25 a1i I = =
27 22 26 eqtrd I = I =
28 27 adantl φ I = I =
29 21 28 eleqtrd φ I = X
30 elsng X I X X =
31 2 30 syl φ X X =
32 31 adantr φ I = X X =
33 29 32 mpbid φ I = X =
34 33 eqcomd φ I = = X
35 34 21 eqeltrd φ I = I
36 4 rpxrd φ E *
37 4 rpgt0d φ 0 < E
38 36 37 jca φ E * 0 < E
39 38 adantr φ I = E * 0 < E
40 xblcntr D ∞Met I I E * 0 < E ball D E
41 20 35 39 40 syl3anc φ I = ball D E
42 34 oveq1d φ I = ball D E = X ball D E
43 41 42 eleqtrd φ I = X ball D E
44 eleq1 y = y X ball D E X ball D E
45 44 rspcev I X ball D E y I y X ball D E
46 15 43 45 syl2anc φ I = y I y X ball D E
47 1 adantr φ ¬ I = I Fin
48 neqne ¬ I = I
49 48 adantl φ ¬ I = I
50 2 adantr φ ¬ I = X I
51 4 adantr φ ¬ I = E +
52 47 49 50 3 51 qndenserrnbllem φ ¬ I = y I y X ball D E
53 46 52 pm2.61dan φ y I y X ball D E