Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Solutions of quadratic, cubic, and quartic equations
quartlem1
Next ⟩
quartlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
quartlem1
Description:
Lemma for
quart
.
(Contributed by
Mario Carneiro
, 6-May-2015)
Ref
Expression
Hypotheses
quartlem1.p
⊢
φ
→
P
∈
ℂ
quartlem1.q
⊢
φ
→
Q
∈
ℂ
quartlem1.r
⊢
φ
→
R
∈
ℂ
quartlem1.u
⊢
φ
→
U
=
P
2
+
12
R
quartlem1.v
⊢
φ
→
V
=
−
2
P
3
-
27
Q
2
+
72
P
R
Assertion
quartlem1
⊢
φ
→
U
=
2
P
2
−
3
P
2
−
4
R
∧
V
=
2
2
P
3
-
9
2
P
P
2
−
4
R
+
27
−
Q
2
Proof
Step
Hyp
Ref
Expression
1
quartlem1.p
⊢
φ
→
P
∈
ℂ
2
quartlem1.q
⊢
φ
→
Q
∈
ℂ
3
quartlem1.r
⊢
φ
→
R
∈
ℂ
4
quartlem1.u
⊢
φ
→
U
=
P
2
+
12
R
5
quartlem1.v
⊢
φ
→
V
=
−
2
P
3
-
27
Q
2
+
72
P
R
6
2cn
⊢
2
∈
ℂ
7
sqmul
⊢
2
∈
ℂ
∧
P
∈
ℂ
→
2
P
2
=
2
2
P
2
8
6
1
7
sylancr
⊢
φ
→
2
P
2
=
2
2
P
2
9
sq2
⊢
2
2
=
4
10
9
oveq1i
⊢
2
2
P
2
=
4
P
2
11
8
10
eqtrdi
⊢
φ
→
2
P
2
=
4
P
2
12
11
oveq1d
⊢
φ
→
2
P
2
−
3
P
2
=
4
P
2
−
3
P
2
13
4cn
⊢
4
∈
ℂ
14
13
a1i
⊢
φ
→
4
∈
ℂ
15
3cn
⊢
3
∈
ℂ
16
15
a1i
⊢
φ
→
3
∈
ℂ
17
1
sqcld
⊢
φ
→
P
2
∈
ℂ
18
14
16
17
subdird
⊢
φ
→
4
−
3
P
2
=
4
P
2
−
3
P
2
19
12
18
eqtr4d
⊢
φ
→
2
P
2
−
3
P
2
=
4
−
3
P
2
20
ax-1cn
⊢
1
∈
ℂ
21
3p1e4
⊢
3
+
1
=
4
22
13
15
20
21
subaddrii
⊢
4
−
3
=
1
23
22
oveq1i
⊢
4
−
3
P
2
=
1
P
2
24
mullid
⊢
P
2
∈
ℂ
→
1
P
2
=
P
2
25
23
24
eqtrid
⊢
P
2
∈
ℂ
→
4
−
3
P
2
=
P
2
26
17
25
syl
⊢
φ
→
4
−
3
P
2
=
P
2
27
19
26
eqtr2d
⊢
φ
→
P
2
=
2
P
2
−
3
P
2
28
27
oveq1d
⊢
φ
→
P
2
+
12
R
=
2
P
2
-
3
P
2
+
12
R
29
mulcl
⊢
2
∈
ℂ
∧
P
∈
ℂ
→
2
P
∈
ℂ
30
6
1
29
sylancr
⊢
φ
→
2
P
∈
ℂ
31
30
sqcld
⊢
φ
→
2
P
2
∈
ℂ
32
mulcl
⊢
3
∈
ℂ
∧
P
2
∈
ℂ
→
3
P
2
∈
ℂ
33
15
17
32
sylancr
⊢
φ
→
3
P
2
∈
ℂ
34
1nn0
⊢
1
∈
ℕ
0
35
2nn
⊢
2
∈
ℕ
36
34
35
decnncl
⊢
12
∈
ℕ
37
36
nncni
⊢
12
∈
ℂ
38
mulcl
⊢
12
∈
ℂ
∧
R
∈
ℂ
→
12
R
∈
ℂ
39
37
3
38
sylancr
⊢
φ
→
12
R
∈
ℂ
40
31
33
39
subsubd
⊢
φ
→
2
P
2
−
3
P
2
−
12
R
=
2
P
2
-
3
P
2
+
12
R
41
28
40
eqtr4d
⊢
φ
→
P
2
+
12
R
=
2
P
2
−
3
P
2
−
12
R
42
mulcl
⊢
4
∈
ℂ
∧
R
∈
ℂ
→
4
R
∈
ℂ
43
13
3
42
sylancr
⊢
φ
→
4
R
∈
ℂ
44
16
17
43
subdid
⊢
φ
→
3
P
2
−
4
R
=
3
P
2
−
3
4
R
45
4t3e12
⊢
4
⋅
3
=
12
46
13
15
45
mulcomli
⊢
3
⋅
4
=
12
47
46
oveq1i
⊢
3
⋅
4
R
=
12
R
48
16
14
3
mulassd
⊢
φ
→
3
⋅
4
R
=
3
4
R
49
47
48
eqtr3id
⊢
φ
→
12
R
=
3
4
R
50
49
oveq2d
⊢
φ
→
3
P
2
−
12
R
=
3
P
2
−
3
4
R
51
44
50
eqtr4d
⊢
φ
→
3
P
2
−
4
R
=
3
P
2
−
12
R
52
51
oveq2d
⊢
φ
→
2
P
2
−
3
P
2
−
4
R
=
2
P
2
−
3
P
2
−
12
R
53
41
4
52
3eqtr4d
⊢
φ
→
U
=
2
P
2
−
3
P
2
−
4
R
54
6
a1i
⊢
φ
→
2
∈
ℂ
55
3nn0
⊢
3
∈
ℕ
0
56
55
a1i
⊢
φ
→
3
∈
ℕ
0
57
54
1
56
mulexpd
⊢
φ
→
2
P
3
=
2
3
P
3
58
cu2
⊢
2
3
=
8
59
58
oveq1i
⊢
2
3
P
3
=
8
P
3
60
57
59
eqtrdi
⊢
φ
→
2
P
3
=
8
P
3
61
60
oveq2d
⊢
φ
→
2
2
P
3
=
2
8
P
3
62
8cn
⊢
8
∈
ℂ
63
62
a1i
⊢
φ
→
8
∈
ℂ
64
expcl
⊢
P
∈
ℂ
∧
3
∈
ℕ
0
→
P
3
∈
ℂ
65
1
55
64
sylancl
⊢
φ
→
P
3
∈
ℂ
66
54
63
65
mul12d
⊢
φ
→
2
8
P
3
=
8
2
P
3
67
61
66
eqtrd
⊢
φ
→
2
2
P
3
=
8
2
P
3
68
9cn
⊢
9
∈
ℂ
69
68
a1i
⊢
φ
→
9
∈
ℂ
70
mulcl
⊢
2
∈
ℂ
∧
P
3
∈
ℂ
→
2
P
3
∈
ℂ
71
6
65
70
sylancr
⊢
φ
→
2
P
3
∈
ℂ
72
1
3
mulcld
⊢
φ
→
P
R
∈
ℂ
73
mulcl
⊢
8
∈
ℂ
∧
P
R
∈
ℂ
→
8
P
R
∈
ℂ
74
62
72
73
sylancr
⊢
φ
→
8
P
R
∈
ℂ
75
69
71
74
subdid
⊢
φ
→
9
2
P
3
−
8
P
R
=
9
2
P
3
−
9
8
P
R
76
30
17
43
subdid
⊢
φ
→
2
P
P
2
−
4
R
=
2
P
P
2
−
2
P
4
R
77
54
1
17
mulassd
⊢
φ
→
2
P
P
2
=
2
P
P
2
78
1
17
mulcomd
⊢
φ
→
P
P
2
=
P
2
P
79
df-3
⊢
3
=
2
+
1
80
79
oveq2i
⊢
P
3
=
P
2
+
1
81
2nn0
⊢
2
∈
ℕ
0
82
expp1
⊢
P
∈
ℂ
∧
2
∈
ℕ
0
→
P
2
+
1
=
P
2
P
83
1
81
82
sylancl
⊢
φ
→
P
2
+
1
=
P
2
P
84
80
83
eqtrid
⊢
φ
→
P
3
=
P
2
P
85
78
84
eqtr4d
⊢
φ
→
P
P
2
=
P
3
86
85
oveq2d
⊢
φ
→
2
P
P
2
=
2
P
3
87
77
86
eqtrd
⊢
φ
→
2
P
P
2
=
2
P
3
88
54
1
14
3
mul4d
⊢
φ
→
2
P
4
R
=
2
⋅
4
P
R
89
4t2e8
⊢
4
⋅
2
=
8
90
13
6
89
mulcomli
⊢
2
⋅
4
=
8
91
90
oveq1i
⊢
2
⋅
4
P
R
=
8
P
R
92
88
91
eqtrdi
⊢
φ
→
2
P
4
R
=
8
P
R
93
87
92
oveq12d
⊢
φ
→
2
P
P
2
−
2
P
4
R
=
2
P
3
−
8
P
R
94
76
93
eqtrd
⊢
φ
→
2
P
P
2
−
4
R
=
2
P
3
−
8
P
R
95
94
oveq2d
⊢
φ
→
9
2
P
P
2
−
4
R
=
9
2
P
3
−
8
P
R
96
9t8e72
⊢
9
⋅
8
=
72
97
96
oveq1i
⊢
9
⋅
8
P
R
=
72
P
R
98
69
63
72
mulassd
⊢
φ
→
9
⋅
8
P
R
=
9
8
P
R
99
97
98
eqtr3id
⊢
φ
→
72
P
R
=
9
8
P
R
100
99
oveq2d
⊢
φ
→
9
2
P
3
−
72
P
R
=
9
2
P
3
−
9
8
P
R
101
75
95
100
3eqtr4d
⊢
φ
→
9
2
P
P
2
−
4
R
=
9
2
P
3
−
72
P
R
102
67
101
oveq12d
⊢
φ
→
2
2
P
3
−
9
2
P
P
2
−
4
R
=
8
2
P
3
−
9
2
P
3
−
72
P
R
103
mulcl
⊢
8
∈
ℂ
∧
2
P
3
∈
ℂ
→
8
2
P
3
∈
ℂ
104
62
71
103
sylancr
⊢
φ
→
8
2
P
3
∈
ℂ
105
mulcl
⊢
9
∈
ℂ
∧
2
P
3
∈
ℂ
→
9
2
P
3
∈
ℂ
106
68
71
105
sylancr
⊢
φ
→
9
2
P
3
∈
ℂ
107
7nn0
⊢
7
∈
ℕ
0
108
107
35
decnncl
⊢
72
∈
ℕ
109
108
nncni
⊢
72
∈
ℂ
110
mulcl
⊢
72
∈
ℂ
∧
P
R
∈
ℂ
→
72
P
R
∈
ℂ
111
109
72
110
sylancr
⊢
φ
→
72
P
R
∈
ℂ
112
104
106
111
subsubd
⊢
φ
→
8
2
P
3
−
9
2
P
3
−
72
P
R
=
8
2
P
3
-
9
2
P
3
+
72
P
R
113
106
104
negsubdi2d
⊢
φ
→
−
9
2
P
3
−
8
2
P
3
=
8
2
P
3
−
9
2
P
3
114
69
63
71
subdird
⊢
φ
→
9
−
8
2
P
3
=
9
2
P
3
−
8
2
P
3
115
8p1e9
⊢
8
+
1
=
9
116
68
62
20
115
subaddrii
⊢
9
−
8
=
1
117
116
oveq1i
⊢
9
−
8
2
P
3
=
1
2
P
3
118
71
mullidd
⊢
φ
→
1
2
P
3
=
2
P
3
119
117
118
eqtrid
⊢
φ
→
9
−
8
2
P
3
=
2
P
3
120
114
119
eqtr3d
⊢
φ
→
9
2
P
3
−
8
2
P
3
=
2
P
3
121
120
negeqd
⊢
φ
→
−
9
2
P
3
−
8
2
P
3
=
−
2
P
3
122
113
121
eqtr3d
⊢
φ
→
8
2
P
3
−
9
2
P
3
=
−
2
P
3
123
122
oveq1d
⊢
φ
→
8
2
P
3
-
9
2
P
3
+
72
P
R
=
-
2
P
3
+
72
P
R
124
102
112
123
3eqtrd
⊢
φ
→
2
2
P
3
−
9
2
P
P
2
−
4
R
=
-
2
P
3
+
72
P
R
125
7nn
⊢
7
∈
ℕ
126
81
125
decnncl
⊢
27
∈
ℕ
127
126
nncni
⊢
27
∈
ℂ
128
2
sqcld
⊢
φ
→
Q
2
∈
ℂ
129
mulneg2
⊢
27
∈
ℂ
∧
Q
2
∈
ℂ
→
27
−
Q
2
=
−
27
Q
2
130
127
128
129
sylancr
⊢
φ
→
27
−
Q
2
=
−
27
Q
2
131
124
130
oveq12d
⊢
φ
→
2
2
P
3
-
9
2
P
P
2
−
4
R
+
27
−
Q
2
=
−
2
P
3
+
72
P
R
+
−
27
Q
2
132
71
negcld
⊢
φ
→
−
2
P
3
∈
ℂ
133
mulcl
⊢
27
∈
ℂ
∧
Q
2
∈
ℂ
→
27
Q
2
∈
ℂ
134
127
128
133
sylancr
⊢
φ
→
27
Q
2
∈
ℂ
135
132
111
134
addsubd
⊢
φ
→
−
2
P
3
+
72
P
R
-
27
Q
2
=
−
2
P
3
-
27
Q
2
+
72
P
R
136
132
111
addcld
⊢
φ
→
-
2
P
3
+
72
P
R
∈
ℂ
137
136
134
negsubd
⊢
φ
→
−
2
P
3
+
72
P
R
+
−
27
Q
2
=
−
2
P
3
+
72
P
R
-
27
Q
2
138
135
137
5
3eqtr4d
⊢
φ
→
−
2
P
3
+
72
P
R
+
−
27
Q
2
=
V
139
131
138
eqtr2d
⊢
φ
→
V
=
2
2
P
3
-
9
2
P
P
2
−
4
R
+
27
−
Q
2
140
53
139
jca
⊢
φ
→
U
=
2
P
2
−
3
P
2
−
4
R
∧
V
=
2
2
P
3
-
9
2
P
P
2
−
4
R
+
27
−
Q
2