Metamath Proof Explorer


Theorem quartlem1

Description: Lemma for quart . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses quartlem1.p φP
quartlem1.q φQ
quartlem1.r φR
quartlem1.u φU=P2+12R
quartlem1.v φV=2P3-27Q2+72PR
Assertion quartlem1 φU=2P23P24RV=22P3-92PP24R+27Q2

Proof

Step Hyp Ref Expression
1 quartlem1.p φP
2 quartlem1.q φQ
3 quartlem1.r φR
4 quartlem1.u φU=P2+12R
5 quartlem1.v φV=2P3-27Q2+72PR
6 2cn 2
7 sqmul 2P2P2=22P2
8 6 1 7 sylancr φ2P2=22P2
9 sq2 22=4
10 9 oveq1i 22P2=4P2
11 8 10 eqtrdi φ2P2=4P2
12 11 oveq1d φ2P23P2=4P23P2
13 4cn 4
14 13 a1i φ4
15 3cn 3
16 15 a1i φ3
17 1 sqcld φP2
18 14 16 17 subdird φ43P2=4P23P2
19 12 18 eqtr4d φ2P23P2=43P2
20 ax-1cn 1
21 3p1e4 3+1=4
22 13 15 20 21 subaddrii 43=1
23 22 oveq1i 43P2=1P2
24 mullid P21P2=P2
25 23 24 eqtrid P243P2=P2
26 17 25 syl φ43P2=P2
27 19 26 eqtr2d φP2=2P23P2
28 27 oveq1d φP2+12R=2P2-3P2+12R
29 mulcl 2P2P
30 6 1 29 sylancr φ2P
31 30 sqcld φ2P2
32 mulcl 3P23P2
33 15 17 32 sylancr φ3P2
34 1nn0 10
35 2nn 2
36 34 35 decnncl 12
37 36 nncni 12
38 mulcl 12R12R
39 37 3 38 sylancr φ12R
40 31 33 39 subsubd φ2P23P212R=2P2-3P2+12R
41 28 40 eqtr4d φP2+12R=2P23P212R
42 mulcl 4R4R
43 13 3 42 sylancr φ4R
44 16 17 43 subdid φ3P24R=3P234R
45 4t3e12 43=12
46 13 15 45 mulcomli 34=12
47 46 oveq1i 34R=12R
48 16 14 3 mulassd φ34R=34R
49 47 48 eqtr3id φ12R=34R
50 49 oveq2d φ3P212R=3P234R
51 44 50 eqtr4d φ3P24R=3P212R
52 51 oveq2d φ2P23P24R=2P23P212R
53 41 4 52 3eqtr4d φU=2P23P24R
54 6 a1i φ2
55 3nn0 30
56 55 a1i φ30
57 54 1 56 mulexpd φ2P3=23P3
58 cu2 23=8
59 58 oveq1i 23P3=8P3
60 57 59 eqtrdi φ2P3=8P3
61 60 oveq2d φ22P3=28P3
62 8cn 8
63 62 a1i φ8
64 expcl P30P3
65 1 55 64 sylancl φP3
66 54 63 65 mul12d φ28P3=82P3
67 61 66 eqtrd φ22P3=82P3
68 9cn 9
69 68 a1i φ9
70 mulcl 2P32P3
71 6 65 70 sylancr φ2P3
72 1 3 mulcld φPR
73 mulcl 8PR8PR
74 62 72 73 sylancr φ8PR
75 69 71 74 subdid φ92P38PR=92P398PR
76 30 17 43 subdid φ2PP24R=2PP22P4R
77 54 1 17 mulassd φ2PP2=2PP2
78 1 17 mulcomd φPP2=P2P
79 df-3 3=2+1
80 79 oveq2i P3=P2+1
81 2nn0 20
82 expp1 P20P2+1=P2P
83 1 81 82 sylancl φP2+1=P2P
84 80 83 eqtrid φP3=P2P
85 78 84 eqtr4d φPP2=P3
86 85 oveq2d φ2PP2=2P3
87 77 86 eqtrd φ2PP2=2P3
88 54 1 14 3 mul4d φ2P4R=24PR
89 4t2e8 42=8
90 13 6 89 mulcomli 24=8
91 90 oveq1i 24PR=8PR
92 88 91 eqtrdi φ2P4R=8PR
93 87 92 oveq12d φ2PP22P4R=2P38PR
94 76 93 eqtrd φ2PP24R=2P38PR
95 94 oveq2d φ92PP24R=92P38PR
96 9t8e72 98=72
97 96 oveq1i 98PR=72PR
98 69 63 72 mulassd φ98PR=98PR
99 97 98 eqtr3id φ72PR=98PR
100 99 oveq2d φ92P372PR=92P398PR
101 75 95 100 3eqtr4d φ92PP24R=92P372PR
102 67 101 oveq12d φ22P392PP24R=82P392P372PR
103 mulcl 82P382P3
104 62 71 103 sylancr φ82P3
105 mulcl 92P392P3
106 68 71 105 sylancr φ92P3
107 7nn0 70
108 107 35 decnncl 72
109 108 nncni 72
110 mulcl 72PR72PR
111 109 72 110 sylancr φ72PR
112 104 106 111 subsubd φ82P392P372PR=82P3-92P3+72PR
113 106 104 negsubdi2d φ92P382P3=82P392P3
114 69 63 71 subdird φ982P3=92P382P3
115 8p1e9 8+1=9
116 68 62 20 115 subaddrii 98=1
117 116 oveq1i 982P3=12P3
118 71 mullidd φ12P3=2P3
119 117 118 eqtrid φ982P3=2P3
120 114 119 eqtr3d φ92P382P3=2P3
121 120 negeqd φ92P382P3=2P3
122 113 121 eqtr3d φ82P392P3=2P3
123 122 oveq1d φ82P3-92P3+72PR=-2P3+72PR
124 102 112 123 3eqtrd φ22P392PP24R=-2P3+72PR
125 7nn 7
126 81 125 decnncl 27
127 126 nncni 27
128 2 sqcld φQ2
129 mulneg2 27Q227Q2=27Q2
130 127 128 129 sylancr φ27Q2=27Q2
131 124 130 oveq12d φ22P3-92PP24R+27Q2=2P3+72PR+27Q2
132 71 negcld φ2P3
133 mulcl 27Q227Q2
134 127 128 133 sylancr φ27Q2
135 132 111 134 addsubd φ2P3+72PR-27Q2=2P3-27Q2+72PR
136 132 111 addcld φ-2P3+72PR
137 136 134 negsubd φ2P3+72PR+27Q2=2P3+72PR-27Q2
138 135 137 5 3eqtr4d φ2P3+72PR+27Q2=V
139 131 138 eqtr2d φV=22P3-92PP24R+27Q2
140 53 139 jca φU=2P23P24RV=22P3-92PP24R+27Q2