Metamath Proof Explorer


Theorem quoremz

Description: Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg . (Contributed by NM, 14-Aug-2008)

Ref Expression
Hypotheses quorem.1 Q=AB
quorem.2 R=ABQ
Assertion quoremz ABQR0R<BA=BQ+R

Proof

Step Hyp Ref Expression
1 quorem.1 Q=AB
2 quorem.2 R=ABQ
3 zre AA
4 3 adantr ABA
5 nnre BB
6 5 adantl ABB
7 nnne0 BB0
8 7 adantl ABB0
9 4 6 8 redivcld ABAB
10 9 flcld ABAB
11 1 10 eqeltrid ABQ
12 11 zcnd ABQ
13 nncn BB
14 13 adantl ABB
15 12 14 8 divcan3d ABBQB=Q
16 flle ABABAB
17 9 16 syl ABABAB
18 1 17 eqbrtrid ABQAB
19 15 18 eqbrtrd ABBQBAB
20 nnz BB
21 20 adantl ABB
22 21 11 zmulcld ABBQ
23 22 zred ABBQ
24 nngt0 B0<B
25 24 adantl AB0<B
26 lediv1 BQAB0<BBQABQBAB
27 23 4 6 25 26 syl112anc ABBQABQBAB
28 19 27 mpbird ABBQA
29 simpl ABA
30 znn0sub BQABQAABQ0
31 22 29 30 syl2anc ABBQAABQ0
32 28 31 mpbid ABABQ0
33 2 32 eqeltrid ABR0
34 1 oveq2i ABQ=ABAB
35 fraclt1 ABABAB<1
36 9 35 syl ABABAB<1
37 34 36 eqbrtrid ABABQ<1
38 2 oveq1i RB=ABQB
39 zcn AA
40 39 adantr ABA
41 22 zcnd ABBQ
42 13 7 jca BBB0
43 42 adantl ABBB0
44 divsubdir ABQBB0ABQB=ABBQB
45 40 41 43 44 syl3anc ABABQB=ABBQB
46 15 oveq2d ABABBQB=ABQ
47 45 46 eqtrd ABABQB=ABQ
48 38 47 eqtrid ABRB=ABQ
49 13 7 dividd BBB=1
50 49 adantl ABBB=1
51 37 48 50 3brtr4d ABRB<BB
52 33 nn0red ABR
53 ltdiv1 RBB0<BR<BRB<BB
54 52 6 6 25 53 syl112anc ABR<BRB<BB
55 51 54 mpbird ABR<B
56 2 oveq2i BQ+R=BQ+A-BQ
57 41 40 pncan3d ABBQ+A-BQ=A
58 56 57 eqtr2id ABA=BQ+R
59 55 58 jca ABR<BA=BQ+R
60 11 33 59 jca31 ABQR0R<BA=BQ+R