Metamath Proof Explorer


Theorem r1plmhm

Description: The univariate polynomial remainder function F is a module homomorphism. Its image ( F "s P ) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1plmhm.1 P=Poly1R
r1plmhm.2 U=BaseP
r1plmhm.4 E=rem1pR
r1plmhm.5 N=Unic1pR
r1plmhm.6 F=fUfEM
r1plmhm.9 φRRing
r1plmhm.10 φMN
Assertion r1plmhm φFPLMHomF𝑠P

Proof

Step Hyp Ref Expression
1 r1plmhm.1 P=Poly1R
2 r1plmhm.2 U=BaseP
3 r1plmhm.4 E=rem1pR
4 r1plmhm.5 N=Unic1pR
5 r1plmhm.6 F=fUfEM
6 r1plmhm.9 φRRing
7 r1plmhm.10 φMN
8 6 adantr φfURRing
9 simpr φfUfU
10 7 adantr φfUMN
11 3 1 2 4 r1pcl RRingfUMNfEMU
12 8 9 10 11 syl3anc φfUfEMU
13 12 5 fmptd φF:UU
14 eqid +P=+P
15 anass φaUbUφaUbU
16 6 ad6antr φaUbUpUqUFa=FpFb=FqRRing
17 simp-6r φaUbUpUqUFa=FpFb=FqaU
18 7 ad6antr φaUbUpUqUFa=FpFb=FqMN
19 simplr φaUbUpUqUFa=FpFb=FqFa=Fp
20 oveq1 f=afEM=aEM
21 ovexd φaUbUpUqUFa=FpFb=FqaEMV
22 5 20 17 21 fvmptd3 φaUbUpUqUFa=FpFb=FqFa=aEM
23 oveq1 f=pfEM=pEM
24 simp-4r φaUbUpUqUFa=FpFb=FqpU
25 ovexd φaUbUpUqUFa=FpFb=FqpEMV
26 5 23 24 25 fvmptd3 φaUbUpUqUFa=FpFb=FqFp=pEM
27 19 22 26 3eqtr3d φaUbUpUqUFa=FpFb=FqaEM=pEM
28 simp-5r φaUbUpUqUFa=FpFb=FqbU
29 1 2 4 3 16 17 18 27 14 24 28 r1padd1 φaUbUpUqUFa=FpFb=Fqa+PbEM=p+PbEM
30 oveq1 f=a+PbfEM=a+PbEM
31 1 ply1ring RRingPRing
32 6 31 syl φPRing
33 32 ringgrpd φPGrp
34 33 ad6antr φaUbUpUqUFa=FpFb=FqPGrp
35 2 14 34 17 28 grpcld φaUbUpUqUFa=FpFb=Fqa+PbU
36 ovexd φaUbUpUqUFa=FpFb=Fqa+PbEMV
37 5 30 35 36 fvmptd3 φaUbUpUqUFa=FpFb=FqFa+Pb=a+PbEM
38 oveq1 f=p+PbfEM=p+PbEM
39 2 14 34 24 28 grpcld φaUbUpUqUFa=FpFb=Fqp+PbU
40 ovexd φaUbUpUqUFa=FpFb=Fqp+PbEMV
41 5 38 39 40 fvmptd3 φaUbUpUqUFa=FpFb=FqFp+Pb=p+PbEM
42 29 37 41 3eqtr4d φaUbUpUqUFa=FpFb=FqFa+Pb=Fp+Pb
43 32 ringabld φPAbel
44 43 ad6antr φaUbUpUqUFa=FpFb=FqPAbel
45 2 14 ablcom PAbelpUbUp+Pb=b+Pp
46 44 24 28 45 syl3anc φaUbUpUqUFa=FpFb=Fqp+Pb=b+Pp
47 46 fveq2d φaUbUpUqUFa=FpFb=FqFp+Pb=Fb+Pp
48 42 47 eqtrd φaUbUpUqUFa=FpFb=FqFa+Pb=Fb+Pp
49 simpr φaUbUpUqUFa=FpFb=FqFb=Fq
50 oveq1 f=bfEM=bEM
51 ovexd φaUbUpUqUFa=FpFb=FqbEMV
52 5 50 28 51 fvmptd3 φaUbUpUqUFa=FpFb=FqFb=bEM
53 oveq1 f=qfEM=qEM
54 simpllr φaUbUpUqUFa=FpFb=FqqU
55 ovexd φaUbUpUqUFa=FpFb=FqqEMV
56 5 53 54 55 fvmptd3 φaUbUpUqUFa=FpFb=FqFq=qEM
57 49 52 56 3eqtr3d φaUbUpUqUFa=FpFb=FqbEM=qEM
58 1 2 4 3 16 28 18 57 14 54 24 r1padd1 φaUbUpUqUFa=FpFb=Fqb+PpEM=q+PpEM
59 oveq1 f=b+PpfEM=b+PpEM
60 2 14 34 28 24 grpcld φaUbUpUqUFa=FpFb=Fqb+PpU
61 ovexd φaUbUpUqUFa=FpFb=Fqb+PpEMV
62 5 59 60 61 fvmptd3 φaUbUpUqUFa=FpFb=FqFb+Pp=b+PpEM
63 oveq1 f=q+PpfEM=q+PpEM
64 2 14 34 54 24 grpcld φaUbUpUqUFa=FpFb=Fqq+PpU
65 ovexd φaUbUpUqUFa=FpFb=Fqq+PpEMV
66 5 63 64 65 fvmptd3 φaUbUpUqUFa=FpFb=FqFq+Pp=q+PpEM
67 58 62 66 3eqtr4d φaUbUpUqUFa=FpFb=FqFb+Pp=Fq+Pp
68 2 14 ablcom PAbelqUpUq+Pp=p+Pq
69 44 54 24 68 syl3anc φaUbUpUqUFa=FpFb=Fqq+Pp=p+Pq
70 69 fveq2d φaUbUpUqUFa=FpFb=FqFq+Pp=Fp+Pq
71 48 67 70 3eqtrd φaUbUpUqUFa=FpFb=FqFa+Pb=Fp+Pq
72 71 expl φaUbUpUqUFa=FpFb=FqFa+Pb=Fp+Pq
73 72 anasss φaUbUpUqUFa=FpFb=FqFa+Pb=Fp+Pq
74 15 73 sylanbr φaUbUpUqUFa=FpFb=FqFa+Pb=Fp+Pq
75 74 3impa φaUbUpUqUFa=FpFb=FqFa+Pb=Fp+Pq
76 eqid ScalarP=ScalarP
77 eqid BaseScalarP=BaseScalarP
78 simplr φFa=FbkBaseScalarPaUbUFa=Fb
79 simpr2 φFa=FbkBaseScalarPaUbUaU
80 ovexd φFa=FbkBaseScalarPaUbUaEMV
81 5 20 79 80 fvmptd3 φFa=FbkBaseScalarPaUbUFa=aEM
82 simpr3 φFa=FbkBaseScalarPaUbUbU
83 ovexd φFa=FbkBaseScalarPaUbUbEMV
84 5 50 82 83 fvmptd3 φFa=FbkBaseScalarPaUbUFb=bEM
85 78 81 84 3eqtr3d φFa=FbkBaseScalarPaUbUaEM=bEM
86 85 oveq2d φFa=FbkBaseScalarPaUbUkPaEM=kPbEM
87 6 ad2antrr φFa=FbkBaseScalarPaUbURRing
88 7 ad2antrr φFa=FbkBaseScalarPaUbUMN
89 eqid P=P
90 eqid BaseR=BaseR
91 simpr1 φFa=FbkBaseScalarPaUbUkBaseScalarP
92 1 ply1sca RRingR=ScalarP
93 6 92 syl φR=ScalarP
94 93 fveq2d φBaseR=BaseScalarP
95 94 ad2antrr φFa=FbkBaseScalarPaUbUBaseR=BaseScalarP
96 91 95 eleqtrrd φFa=FbkBaseScalarPaUbUkBaseR
97 1 2 4 3 87 79 88 89 90 96 r1pvsca φFa=FbkBaseScalarPaUbUkPaEM=kPaEM
98 1 2 4 3 87 82 88 89 90 96 r1pvsca φFa=FbkBaseScalarPaUbUkPbEM=kPbEM
99 86 97 98 3eqtr4d φFa=FbkBaseScalarPaUbUkPaEM=kPbEM
100 oveq1 f=kPafEM=kPaEM
101 1 ply1lmod RRingPLMod
102 87 101 syl φFa=FbkBaseScalarPaUbUPLMod
103 2 76 89 77 102 91 79 lmodvscld φFa=FbkBaseScalarPaUbUkPaU
104 ovexd φFa=FbkBaseScalarPaUbUkPaEMV
105 5 100 103 104 fvmptd3 φFa=FbkBaseScalarPaUbUFkPa=kPaEM
106 oveq1 f=kPbfEM=kPbEM
107 2 76 89 77 102 91 82 lmodvscld φFa=FbkBaseScalarPaUbUkPbU
108 ovexd φFa=FbkBaseScalarPaUbUkPbEMV
109 5 106 107 108 fvmptd3 φFa=FbkBaseScalarPaUbUFkPb=kPbEM
110 99 105 109 3eqtr4d φFa=FbkBaseScalarPaUbUFkPa=FkPb
111 110 an32s φkBaseScalarPaUbUFa=FbFkPa=FkPb
112 111 ex φkBaseScalarPaUbUFa=FbFkPa=FkPb
113 6 101 syl φPLMod
114 2 13 14 75 76 77 112 113 89 imaslmhm φF𝑠PLModFPLMHomF𝑠P
115 114 simprd φFPLMHomF𝑠P