Metamath Proof Explorer


Theorem ramlb

Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses ramlb.c C=aV,i0b𝒫a|b=i
ramlb.m φM0
ramlb.r φRV
ramlb.f φF:R0
ramlb.s φN0
ramlb.g φG:1NCMR
ramlb.i φcRx1NxCMG-1cx<Fc
Assertion ramlb φN<MRamseyF

Proof

Step Hyp Ref Expression
1 ramlb.c C=aV,i0b𝒫a|b=i
2 ramlb.m φM0
3 ramlb.r φRV
4 ramlb.f φF:R0
5 ramlb.s φN0
6 ramlb.g φG:1NCMR
7 ramlb.i φcRx1NxCMG-1cx<Fc
8 2 adantr φMRamseyFNM0
9 3 adantr φMRamseyFNRV
10 4 adantr φMRamseyFNF:R0
11 5 adantr φMRamseyFNN0
12 simpr φMRamseyFNMRamseyFN
13 ramubcl M0RVF:R0N0MRamseyFNMRamseyF0
14 8 9 10 11 12 13 syl32anc φMRamseyFNMRamseyF0
15 fzfid φMRamseyFN1NFin
16 hashfz1 N01N=N
17 5 16 syl φ1N=N
18 17 breq2d φMRamseyF1NMRamseyFN
19 18 biimpar φMRamseyFNMRamseyF1N
20 6 adantr φMRamseyFNG:1NCMR
21 1 8 9 10 14 15 19 20 rami φMRamseyFNcRx𝒫1NFcxxCMG-1c
22 elpwi x𝒫1Nx1N
23 7 adantlr φMRamseyFNcRx1NxCMG-1cx<Fc
24 fzfid φMRamseyFNcRx1N1NFin
25 simprr φMRamseyFNcRx1Nx1N
26 24 25 ssfid φMRamseyFNcRx1NxFin
27 hashcl xFinx0
28 26 27 syl φMRamseyFNcRx1Nx0
29 28 nn0red φMRamseyFNcRx1Nx
30 simpl cRx1NcR
31 ffvelcdm F:R0cRFc0
32 10 30 31 syl2an φMRamseyFNcRx1NFc0
33 32 nn0red φMRamseyFNcRx1NFc
34 29 33 ltnled φMRamseyFNcRx1Nx<Fc¬Fcx
35 23 34 sylibd φMRamseyFNcRx1NxCMG-1c¬Fcx
36 22 35 sylanr2 φMRamseyFNcRx𝒫1NxCMG-1c¬Fcx
37 36 con2d φMRamseyFNcRx𝒫1NFcx¬xCMG-1c
38 imnan Fcx¬xCMG-1c¬FcxxCMG-1c
39 37 38 sylib φMRamseyFNcRx𝒫1N¬FcxxCMG-1c
40 39 pm2.21d φMRamseyFNcRx𝒫1NFcxxCMG-1c¬MRamseyFN
41 40 rexlimdvva φMRamseyFNcRx𝒫1NFcxxCMG-1c¬MRamseyFN
42 21 41 mpd φMRamseyFN¬MRamseyFN
43 42 pm2.01da φ¬MRamseyFN
44 5 nn0red φN
45 44 rexrd φN*
46 ramxrcl M0RVF:R0MRamseyF*
47 2 3 4 46 syl3anc φMRamseyF*
48 xrltnle N*MRamseyF*N<MRamseyF¬MRamseyFN
49 45 47 48 syl2anc φN<MRamseyF¬MRamseyFN
50 43 49 mpbird φN<MRamseyF