| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnsex |
|
| 2 |
1
|
abrexex |
|
| 3 |
2
|
a1i |
|
| 4 |
1
|
abrexex |
|
| 5 |
4
|
a1i |
|
| 6 |
|
1sno |
|
| 7 |
6
|
a1i |
|
| 8 |
|
nnsno |
|
| 9 |
|
nnne0s |
|
| 10 |
7 8 9
|
divscld |
|
| 11 |
|
subscl |
|
| 12 |
10 11
|
sylan2 |
|
| 13 |
|
eleq1 |
|
| 14 |
12 13
|
syl5ibrcom |
|
| 15 |
14
|
rexlimdva |
|
| 16 |
15
|
abssdv |
|
| 17 |
|
addscl |
|
| 18 |
10 17
|
sylan2 |
|
| 19 |
|
eleq1 |
|
| 20 |
18 19
|
syl5ibrcom |
|
| 21 |
20
|
rexlimdva |
|
| 22 |
21
|
abssdv |
|
| 23 |
|
vex |
|
| 24 |
|
eqeq1 |
|
| 25 |
24
|
rexbidv |
|
| 26 |
23 25
|
elab |
|
| 27 |
|
vex |
|
| 28 |
|
eqeq1 |
|
| 29 |
28
|
rexbidv |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
oveq2d |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
cbvrexvw |
|
| 34 |
29 33
|
bitrdi |
|
| 35 |
27 34
|
elab |
|
| 36 |
26 35
|
anbi12i |
|
| 37 |
|
reeanv |
|
| 38 |
36 37
|
bitr4i |
|
| 39 |
|
simpl |
|
| 40 |
10
|
adantl |
|
| 41 |
39 40
|
subsvald |
|
| 42 |
41
|
adantrr |
|
| 43 |
10
|
negscld |
|
| 44 |
43
|
adantr |
|
| 45 |
|
0sno |
|
| 46 |
45
|
a1i |
|
| 47 |
6
|
a1i |
|
| 48 |
|
nnsno |
|
| 49 |
|
nnne0s |
|
| 50 |
47 48 49
|
divscld |
|
| 51 |
50
|
adantl |
|
| 52 |
|
id |
|
| 53 |
52
|
nnsrecgt0d |
|
| 54 |
45
|
a1i |
|
| 55 |
54 10
|
sltnegd |
|
| 56 |
53 55
|
mpbid |
|
| 57 |
|
negs0s |
|
| 58 |
56 57
|
breqtrdi |
|
| 59 |
58
|
adantr |
|
| 60 |
|
id |
|
| 61 |
60
|
nnsrecgt0d |
|
| 62 |
61
|
adantl |
|
| 63 |
44 46 51 59 62
|
slttrd |
|
| 64 |
63
|
adantl |
|
| 65 |
44
|
adantl |
|
| 66 |
50
|
ad2antll |
|
| 67 |
|
simpl |
|
| 68 |
65 66 67
|
sltadd2d |
|
| 69 |
64 68
|
mpbid |
|
| 70 |
42 69
|
eqbrtrd |
|
| 71 |
|
breq12 |
|
| 72 |
70 71
|
syl5ibrcom |
|
| 73 |
72
|
rexlimdvva |
|
| 74 |
38 73
|
biimtrid |
|
| 75 |
74
|
3impib |
|
| 76 |
3 5 16 22 75
|
ssltd |
|