| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reprval.a |  | 
						
							| 2 |  | reprval.m |  | 
						
							| 3 |  | reprval.s |  | 
						
							| 4 |  | reprlt.1 |  | 
						
							| 5 | 1 2 3 | reprval |  | 
						
							| 6 | 2 | zred |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 | 3 | nn0red |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | fzofi |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | nnssre |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 | 1 13 | sstrd |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 |  | nnex |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 | 17 1 | ssexd |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 10 | elexi |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 |  | elmapg |  | 
						
							| 24 | 23 | biimpa |  | 
						
							| 25 | 19 21 22 24 | syl21anc |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 26 27 | ffvelcdmd |  | 
						
							| 29 | 15 28 | sseldd |  | 
						
							| 30 | 11 29 | fsumrecl |  | 
						
							| 31 | 4 | adantr |  | 
						
							| 32 |  | ax-1cn |  | 
						
							| 33 |  | fsumconst |  | 
						
							| 34 | 10 32 33 | mp2an |  | 
						
							| 35 |  | hashcl |  | 
						
							| 36 | 10 35 | ax-mp |  | 
						
							| 37 | 36 | nn0cni |  | 
						
							| 38 | 37 | mulridi |  | 
						
							| 39 | 34 38 | eqtri |  | 
						
							| 40 |  | hashfzo0 |  | 
						
							| 41 | 3 40 | syl |  | 
						
							| 42 | 39 41 | eqtrid |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 |  | 1red |  | 
						
							| 45 | 1 | ad2antrr |  | 
						
							| 46 | 45 28 | sseldd |  | 
						
							| 47 |  | nnge1 |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 11 44 29 48 | fsumle |  | 
						
							| 50 | 43 49 | eqbrtrrd |  | 
						
							| 51 | 7 9 30 31 50 | ltletrd |  | 
						
							| 52 | 7 51 | ltned |  | 
						
							| 53 | 52 | necomd |  | 
						
							| 54 | 53 | neneqd |  | 
						
							| 55 | 54 | ralrimiva |  | 
						
							| 56 |  | rabeq0 |  | 
						
							| 57 | 55 56 | sylibr |  | 
						
							| 58 | 5 57 | eqtrd |  |