Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
|
2 |
|
reprval.m |
|
3 |
|
reprval.s |
|
4 |
|
reprlt.1 |
|
5 |
1 2 3
|
reprval |
|
6 |
2
|
zred |
|
7 |
6
|
adantr |
|
8 |
3
|
nn0red |
|
9 |
8
|
adantr |
|
10 |
|
fzofi |
|
11 |
10
|
a1i |
|
12 |
|
nnssre |
|
13 |
12
|
a1i |
|
14 |
1 13
|
sstrd |
|
15 |
14
|
ad2antrr |
|
16 |
|
nnex |
|
17 |
16
|
a1i |
|
18 |
17 1
|
ssexd |
|
19 |
18
|
adantr |
|
20 |
10
|
elexi |
|
21 |
20
|
a1i |
|
22 |
|
simpr |
|
23 |
|
elmapg |
|
24 |
23
|
biimpa |
|
25 |
19 21 22 24
|
syl21anc |
|
26 |
25
|
adantr |
|
27 |
|
simpr |
|
28 |
26 27
|
ffvelrnd |
|
29 |
15 28
|
sseldd |
|
30 |
11 29
|
fsumrecl |
|
31 |
4
|
adantr |
|
32 |
|
ax-1cn |
|
33 |
|
fsumconst |
|
34 |
10 32 33
|
mp2an |
|
35 |
|
hashcl |
|
36 |
10 35
|
ax-mp |
|
37 |
36
|
nn0cni |
|
38 |
37
|
mulid1i |
|
39 |
34 38
|
eqtri |
|
40 |
|
hashfzo0 |
|
41 |
3 40
|
syl |
|
42 |
39 41
|
eqtrid |
|
43 |
42
|
adantr |
|
44 |
|
1red |
|
45 |
1
|
ad2antrr |
|
46 |
45 28
|
sseldd |
|
47 |
|
nnge1 |
|
48 |
46 47
|
syl |
|
49 |
11 44 29 48
|
fsumle |
|
50 |
43 49
|
eqbrtrrd |
|
51 |
7 9 30 31 50
|
ltletrd |
|
52 |
7 51
|
ltned |
|
53 |
52
|
necomd |
|
54 |
53
|
neneqd |
|
55 |
54
|
ralrimiva |
|
56 |
|
rabeq0 |
|
57 |
55 56
|
sylibr |
|
58 |
5 57
|
eqtrd |
|