Metamath Proof Explorer


Theorem reprlt

Description: There are no representations of M with more than M terms. Remark of Nathanson p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses reprval.a φ A
reprval.m φ M
reprval.s φ S 0
reprlt.1 φ M < S
Assertion reprlt φ A repr S M =

Proof

Step Hyp Ref Expression
1 reprval.a φ A
2 reprval.m φ M
3 reprval.s φ S 0
4 reprlt.1 φ M < S
5 1 2 3 reprval φ A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
6 2 zred φ M
7 6 adantr φ c A 0 ..^ S M
8 3 nn0red φ S
9 8 adantr φ c A 0 ..^ S S
10 fzofi 0 ..^ S Fin
11 10 a1i φ c A 0 ..^ S 0 ..^ S Fin
12 nnssre
13 12 a1i φ
14 1 13 sstrd φ A
15 14 ad2antrr φ c A 0 ..^ S a 0 ..^ S A
16 nnex V
17 16 a1i φ V
18 17 1 ssexd φ A V
19 18 adantr φ c A 0 ..^ S A V
20 10 elexi 0 ..^ S V
21 20 a1i φ c A 0 ..^ S 0 ..^ S V
22 simpr φ c A 0 ..^ S c A 0 ..^ S
23 elmapg A V 0 ..^ S V c A 0 ..^ S c : 0 ..^ S A
24 23 biimpa A V 0 ..^ S V c A 0 ..^ S c : 0 ..^ S A
25 19 21 22 24 syl21anc φ c A 0 ..^ S c : 0 ..^ S A
26 25 adantr φ c A 0 ..^ S a 0 ..^ S c : 0 ..^ S A
27 simpr φ c A 0 ..^ S a 0 ..^ S a 0 ..^ S
28 26 27 ffvelrnd φ c A 0 ..^ S a 0 ..^ S c a A
29 15 28 sseldd φ c A 0 ..^ S a 0 ..^ S c a
30 11 29 fsumrecl φ c A 0 ..^ S a 0 ..^ S c a
31 4 adantr φ c A 0 ..^ S M < S
32 ax-1cn 1
33 fsumconst 0 ..^ S Fin 1 a 0 ..^ S 1 = 0 ..^ S 1
34 10 32 33 mp2an a 0 ..^ S 1 = 0 ..^ S 1
35 hashcl 0 ..^ S Fin 0 ..^ S 0
36 10 35 ax-mp 0 ..^ S 0
37 36 nn0cni 0 ..^ S
38 37 mulid1i 0 ..^ S 1 = 0 ..^ S
39 34 38 eqtri a 0 ..^ S 1 = 0 ..^ S
40 hashfzo0 S 0 0 ..^ S = S
41 3 40 syl φ 0 ..^ S = S
42 39 41 eqtrid φ a 0 ..^ S 1 = S
43 42 adantr φ c A 0 ..^ S a 0 ..^ S 1 = S
44 1red φ c A 0 ..^ S a 0 ..^ S 1
45 1 ad2antrr φ c A 0 ..^ S a 0 ..^ S A
46 45 28 sseldd φ c A 0 ..^ S a 0 ..^ S c a
47 nnge1 c a 1 c a
48 46 47 syl φ c A 0 ..^ S a 0 ..^ S 1 c a
49 11 44 29 48 fsumle φ c A 0 ..^ S a 0 ..^ S 1 a 0 ..^ S c a
50 43 49 eqbrtrrd φ c A 0 ..^ S S a 0 ..^ S c a
51 7 9 30 31 50 ltletrd φ c A 0 ..^ S M < a 0 ..^ S c a
52 7 51 ltned φ c A 0 ..^ S M a 0 ..^ S c a
53 52 necomd φ c A 0 ..^ S a 0 ..^ S c a M
54 53 neneqd φ c A 0 ..^ S ¬ a 0 ..^ S c a = M
55 54 ralrimiva φ c A 0 ..^ S ¬ a 0 ..^ S c a = M
56 rabeq0 c A 0 ..^ S | a 0 ..^ S c a = M = c A 0 ..^ S ¬ a 0 ..^ S c a = M
57 55 56 sylibr φ c A 0 ..^ S | a 0 ..^ S c a = M =
58 5 57 eqtrd φ A repr S M =