| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm2.u |  | 
						
							| 2 |  | mhmrcl1 |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 | 1 | submmnd |  | 
						
							| 5 | 4 | ad2antrr |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 6 7 | mhmf |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 9 | ffnd |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 |  | df-f |  | 
						
							| 13 | 10 11 12 | sylanbrc |  | 
						
							| 14 | 1 | submbas |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 | 15 | feq3d |  | 
						
							| 17 | 13 16 | mpbid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 6 18 19 | mhmlin |  | 
						
							| 21 | 20 | 3expb |  | 
						
							| 22 | 21 | adantll |  | 
						
							| 23 | 1 19 | ressplusg |  | 
						
							| 24 | 23 | ad3antrrr |  | 
						
							| 25 | 24 | oveqd |  | 
						
							| 26 | 22 25 | eqtrd |  | 
						
							| 27 | 26 | ralrimivva |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 28 29 | mhm0 |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 1 29 | subm0 |  | 
						
							| 33 | 32 | ad2antrr |  | 
						
							| 34 | 31 33 | eqtrd |  | 
						
							| 35 | 17 27 34 | 3jca |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 6 36 18 37 28 38 | ismhm |  | 
						
							| 40 | 3 5 35 39 | syl21anbrc |  | 
						
							| 41 | 1 | resmhm2 |  | 
						
							| 42 | 41 | ancoms |  | 
						
							| 43 | 42 | adantlr |  | 
						
							| 44 | 40 43 | impbida |  |