Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resmhm2.u | |
|
Assertion | resmhm2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmhm2.u | |
|
2 | mhmrcl1 | |
|
3 | 2 | adantl | |
4 | 1 | submmnd | |
5 | 4 | ad2antrr | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | mhmf | |
9 | 8 | adantl | |
10 | 9 | ffnd | |
11 | simplr | |
|
12 | df-f | |
|
13 | 10 11 12 | sylanbrc | |
14 | 1 | submbas | |
15 | 14 | ad2antrr | |
16 | 15 | feq3d | |
17 | 13 16 | mpbid | |
18 | eqid | |
|
19 | eqid | |
|
20 | 6 18 19 | mhmlin | |
21 | 20 | 3expb | |
22 | 21 | adantll | |
23 | 1 19 | ressplusg | |
24 | 23 | ad3antrrr | |
25 | 24 | oveqd | |
26 | 22 25 | eqtrd | |
27 | 26 | ralrimivva | |
28 | eqid | |
|
29 | eqid | |
|
30 | 28 29 | mhm0 | |
31 | 30 | adantl | |
32 | 1 29 | subm0 | |
33 | 32 | ad2antrr | |
34 | 31 33 | eqtrd | |
35 | 17 27 34 | 3jca | |
36 | eqid | |
|
37 | eqid | |
|
38 | eqid | |
|
39 | 6 36 18 37 28 38 | ismhm | |
40 | 3 5 35 39 | syl21anbrc | |
41 | 1 | resmhm2 | |
42 | 41 | ancoms | |
43 | 42 | adantlr | |
44 | 40 43 | impbida | |