Metamath Proof Explorer


Theorem resmhm2b

Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypothesis resmhm2.u U=T𝑠X
Assertion resmhm2b XSubMndTranFXFSMndHomTFSMndHomU

Proof

Step Hyp Ref Expression
1 resmhm2.u U=T𝑠X
2 mhmrcl1 FSMndHomTSMnd
3 2 adantl XSubMndTranFXFSMndHomTSMnd
4 1 submmnd XSubMndTUMnd
5 4 ad2antrr XSubMndTranFXFSMndHomTUMnd
6 eqid BaseS=BaseS
7 eqid BaseT=BaseT
8 6 7 mhmf FSMndHomTF:BaseSBaseT
9 8 adantl XSubMndTranFXFSMndHomTF:BaseSBaseT
10 9 ffnd XSubMndTranFXFSMndHomTFFnBaseS
11 simplr XSubMndTranFXFSMndHomTranFX
12 df-f F:BaseSXFFnBaseSranFX
13 10 11 12 sylanbrc XSubMndTranFXFSMndHomTF:BaseSX
14 1 submbas XSubMndTX=BaseU
15 14 ad2antrr XSubMndTranFXFSMndHomTX=BaseU
16 15 feq3d XSubMndTranFXFSMndHomTF:BaseSXF:BaseSBaseU
17 13 16 mpbid XSubMndTranFXFSMndHomTF:BaseSBaseU
18 eqid +S=+S
19 eqid +T=+T
20 6 18 19 mhmlin FSMndHomTxBaseSyBaseSFx+Sy=Fx+TFy
21 20 3expb FSMndHomTxBaseSyBaseSFx+Sy=Fx+TFy
22 21 adantll XSubMndTranFXFSMndHomTxBaseSyBaseSFx+Sy=Fx+TFy
23 1 19 ressplusg XSubMndT+T=+U
24 23 ad3antrrr XSubMndTranFXFSMndHomTxBaseSyBaseS+T=+U
25 24 oveqd XSubMndTranFXFSMndHomTxBaseSyBaseSFx+TFy=Fx+UFy
26 22 25 eqtrd XSubMndTranFXFSMndHomTxBaseSyBaseSFx+Sy=Fx+UFy
27 26 ralrimivva XSubMndTranFXFSMndHomTxBaseSyBaseSFx+Sy=Fx+UFy
28 eqid 0S=0S
29 eqid 0T=0T
30 28 29 mhm0 FSMndHomTF0S=0T
31 30 adantl XSubMndTranFXFSMndHomTF0S=0T
32 1 29 subm0 XSubMndT0T=0U
33 32 ad2antrr XSubMndTranFXFSMndHomT0T=0U
34 31 33 eqtrd XSubMndTranFXFSMndHomTF0S=0U
35 17 27 34 3jca XSubMndTranFXFSMndHomTF:BaseSBaseUxBaseSyBaseSFx+Sy=Fx+UFyF0S=0U
36 eqid BaseU=BaseU
37 eqid +U=+U
38 eqid 0U=0U
39 6 36 18 37 28 38 ismhm FSMndHomUSMndUMndF:BaseSBaseUxBaseSyBaseSFx+Sy=Fx+UFyF0S=0U
40 3 5 35 39 syl21anbrc XSubMndTranFXFSMndHomTFSMndHomU
41 1 resmhm2 FSMndHomUXSubMndTFSMndHomT
42 41 ancoms XSubMndTFSMndHomUFSMndHomT
43 42 adantlr XSubMndTranFXFSMndHomUFSMndHomT
44 40 43 impbida XSubMndTranFXFSMndHomTFSMndHomU