Metamath Proof Explorer


Theorem rexanuz2nf

Description: A simple counterexample related to theorem rexanuz2 , demonstrating the necessity of its disjoint variable constraints. Here, j appears free in ph , showing that without these constraints, rexanuz2 and similar theorems would not hold (see rexanre and rexanuz ). (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rexanuz2nf.1 Z=0
rexanuz2nf.2 φj=0jk
rexanuz2nf.3 ψ0<k
Assertion rexanuz2nf ¬jZkjφψjZkjφjZkjψ

Proof

Step Hyp Ref Expression
1 rexanuz2nf.1 Z=0
2 rexanuz2nf.2 φj=0jk
3 rexanuz2nf.3 ψ0<k
4 0nn0 00
5 nn0ge0 k00k
6 5 rgen k00k
7 fveq2 j=0j=0
8 nn0uz 0=0
9 7 8 eqtr4di j=0j=0
10 9 raleqdv j=0kjj=0jkk0j=0jk
11 5 ad2antlr j=0k0j=0jk0k
12 simpll j=0k00kj=0
13 simpr j=0k00k0k
14 12 13 eqbrtrd j=0k00kjk
15 12 14 jca j=0k00kj=0jk
16 11 15 impbida j=0k0j=0jk0k
17 16 ralbidva j=0k0j=0jkk00k
18 10 17 bitrd j=0kjj=0jkk00k
19 18 rspcev 00k00kj0kjj=0jk
20 4 6 19 mp2an j0kjj=0jk
21 nfcv _j0
22 1 21 nfcxfr _jZ
23 22 21 1 rexeqif jZkjj=0jkj0kjj=0jk
24 20 23 mpbir jZkjj=0jk
25 2 ralbii kjφkjj=0jk
26 25 rexbii jZkjφjZkjj=0jk
27 24 26 mpbir jZkjφ
28 1nn0 10
29 nngt0 k0<k
30 29 rgen k0<k
31 fveq2 j=1j=1
32 nnuz =1
33 31 32 eqtr4di j=1j=
34 33 raleqdv j=1kj0<kk0<k
35 34 rspcev 10k0<kj0kj0<k
36 28 30 35 mp2an j0kj0<k
37 22 21 1 rexeqif jZkj0<kj0kj0<k
38 36 37 mpbir jZkj0<k
39 3 ralbii kjψkj0<k
40 39 rexbii jZkjψjZkj0<k
41 38 40 mpbir jZkjψ
42 27 41 pm3.2i jZkjφjZkjψ
43 nfv k¬j=0jj0<j
44 nfcv _kj
45 nfcv _kj
46 8 uzid3 j0jj
47 46 adantr j0j=0jj
48 0re 0
49 48 ltnri ¬0<0
50 49 a1i j=0¬0<0
51 eqcom j=00=j
52 51 biimpi j=00=j
53 50 52 brneqtrd j=0¬0<j
54 53 intnand j=0¬j=0jj0<j
55 54 adantl j0j=0¬j=0jj0<j
56 breq2 k=jjkjj
57 56 anbi2d k=jj=0jkj=0jj
58 2 57 bitrid k=jφj=0jj
59 breq2 k=j0<k0<j
60 3 59 bitrid k=jψ0<j
61 58 60 anbi12d k=jφψj=0jj0<j
62 61 notbid k=j¬φψ¬j=0jj0<j
63 43 44 45 47 55 62 rspced j0j=0kj¬φψ
64 46 adantr j0¬j=0jj
65 id ¬j=0¬j=0
66 65 intnanrd ¬j=0¬j=0jj
67 66 intnanrd ¬j=0¬j=0jj0<j
68 67 adantl j0¬j=0¬j=0jj0<j
69 43 44 45 64 68 62 rspced j0¬j=0kj¬φψ
70 63 69 pm2.61dan j0kj¬φψ
71 rexnal kj¬φψ¬kjφψ
72 70 71 sylib j0¬kjφψ
73 72 nrex ¬j0kjφψ
74 22 21 1 rexeqif jZkjφψj0kjφψ
75 73 74 mtbir ¬jZkjφψ
76 42 75 pm3.2i jZkjφjZkjψ¬jZkjφψ
77 annim jZkjφjZkjψ¬jZkjφψ¬jZkjφjZkjψjZkjφψ
78 76 77 mpbi ¬jZkjφjZkjψjZkjφψ
79 78 nimnbi2 ¬jZkjφψjZkjφjZkjψ