Metamath Proof Explorer


Theorem rfcnpre3

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre3.2 _tF
rfcnpre3.3 K=topGenran.
rfcnpre3.4 T=J
rfcnpre3.5 A=tT|BFt
rfcnpre3.6 φB
rfcnpre3.8 φFJCnK
Assertion rfcnpre3 φAClsdJ

Proof

Step Hyp Ref Expression
1 rfcnpre3.2 _tF
2 rfcnpre3.3 K=topGenran.
3 rfcnpre3.4 T=J
4 rfcnpre3.5 A=tT|BFt
5 rfcnpre3.6 φB
6 rfcnpre3.8 φFJCnK
7 eqid JCnK=JCnK
8 2 3 7 6 fcnre φF:T
9 ffn F:TFFnT
10 elpreima FFnTsF-1B+∞sTFsB+∞
11 8 9 10 3syl φsF-1B+∞sTFsB+∞
12 5 rexrd φB*
13 12 adantr φsTB*
14 pnfxr +∞*
15 elico1 B*+∞*FsB+∞Fs*BFsFs<+∞
16 13 14 15 sylancl φsTFsB+∞Fs*BFsFs<+∞
17 simpr2 φsTFs*BFsFs<+∞BFs
18 8 ffvelcdmda φsTFs
19 18 rexrd φsTFs*
20 19 adantr φsTBFsFs*
21 simpr φsTBFsBFs
22 18 adantr φsTBFsFs
23 ltpnf FsFs<+∞
24 22 23 syl φsTBFsFs<+∞
25 20 21 24 3jca φsTBFsFs*BFsFs<+∞
26 17 25 impbida φsTFs*BFsFs<+∞BFs
27 16 26 bitrd φsTFsB+∞BFs
28 27 pm5.32da φsTFsB+∞sTBFs
29 11 28 bitrd φsF-1B+∞sTBFs
30 nfcv _ts
31 nfcv _tT
32 nfcv _tB
33 nfcv _t
34 1 30 nffv _tFs
35 32 33 34 nfbr tBFs
36 fveq2 t=sFt=Fs
37 36 breq2d t=sBFtBFs
38 30 31 35 37 elrabf stT|BFtsTBFs
39 29 38 bitr4di φsF-1B+∞stT|BFt
40 39 eqrdv φF-1B+∞=tT|BFt
41 40 4 eqtr4di φF-1B+∞=A
42 icopnfcld BB+∞ClsdtopGenran.
43 5 42 syl φB+∞ClsdtopGenran.
44 2 fveq2i ClsdK=ClsdtopGenran.
45 43 44 eleqtrrdi φB+∞ClsdK
46 cnclima FJCnKB+∞ClsdKF-1B+∞ClsdJ
47 6 45 46 syl2anc φF-1B+∞ClsdJ
48 41 47 eqeltrrd φAClsdJ