Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rfcnpre4.1 | |
|
rfcnpre4.2 | |
||
rfcnpre4.3 | |
||
rfcnpre4.4 | |
||
rfcnpre4.5 | |
||
rfcnpre4.6 | |
||
Assertion | rfcnpre4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfcnpre4.1 | |
|
2 | rfcnpre4.2 | |
|
3 | rfcnpre4.3 | |
|
4 | rfcnpre4.4 | |
|
5 | rfcnpre4.5 | |
|
6 | rfcnpre4.6 | |
|
7 | eqid | |
|
8 | 2 3 7 6 | fcnre | |
9 | ffn | |
|
10 | elpreima | |
|
11 | 8 9 10 | 3syl | |
12 | mnfxr | |
|
13 | 5 | rexrd | |
14 | 13 | adantr | |
15 | elioc1 | |
|
16 | 12 14 15 | sylancr | |
17 | simpr3 | |
|
18 | 8 | ffvelcdmda | |
19 | 18 | rexrd | |
20 | 19 | adantr | |
21 | 18 | adantr | |
22 | mnflt | |
|
23 | 21 22 | syl | |
24 | simpr | |
|
25 | 20 23 24 | 3jca | |
26 | 17 25 | impbida | |
27 | 16 26 | bitrd | |
28 | 27 | pm5.32da | |
29 | 11 28 | bitrd | |
30 | nfcv | |
|
31 | nfcv | |
|
32 | 1 30 | nffv | |
33 | nfcv | |
|
34 | nfcv | |
|
35 | 32 33 34 | nfbr | |
36 | fveq2 | |
|
37 | 36 | breq1d | |
38 | 30 31 35 37 | elrabf | |
39 | 29 38 | bitr4di | |
40 | 39 | eqrdv | |
41 | 40 4 | eqtr4di | |
42 | iocmnfcld | |
|
43 | 5 42 | syl | |
44 | 2 | fveq2i | |
45 | 43 44 | eleqtrrdi | |
46 | cnclima | |
|
47 | 6 45 46 | syl2anc | |
48 | 41 47 | eqeltrrd | |