Metamath Proof Explorer


Theorem rfcnpre4

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre4.1 _tF
rfcnpre4.2 K=topGenran.
rfcnpre4.3 T=J
rfcnpre4.4 A=tT|FtB
rfcnpre4.5 φB
rfcnpre4.6 φFJCnK
Assertion rfcnpre4 φAClsdJ

Proof

Step Hyp Ref Expression
1 rfcnpre4.1 _tF
2 rfcnpre4.2 K=topGenran.
3 rfcnpre4.3 T=J
4 rfcnpre4.4 A=tT|FtB
5 rfcnpre4.5 φB
6 rfcnpre4.6 φFJCnK
7 eqid JCnK=JCnK
8 2 3 7 6 fcnre φF:T
9 ffn F:TFFnT
10 elpreima FFnTsF-1−∞BsTFs−∞B
11 8 9 10 3syl φsF-1−∞BsTFs−∞B
12 mnfxr −∞*
13 5 rexrd φB*
14 13 adantr φsTB*
15 elioc1 −∞*B*Fs−∞BFs*−∞<FsFsB
16 12 14 15 sylancr φsTFs−∞BFs*−∞<FsFsB
17 simpr3 φsTFs*−∞<FsFsBFsB
18 8 ffvelcdmda φsTFs
19 18 rexrd φsTFs*
20 19 adantr φsTFsBFs*
21 18 adantr φsTFsBFs
22 mnflt Fs−∞<Fs
23 21 22 syl φsTFsB−∞<Fs
24 simpr φsTFsBFsB
25 20 23 24 3jca φsTFsBFs*−∞<FsFsB
26 17 25 impbida φsTFs*−∞<FsFsBFsB
27 16 26 bitrd φsTFs−∞BFsB
28 27 pm5.32da φsTFs−∞BsTFsB
29 11 28 bitrd φsF-1−∞BsTFsB
30 nfcv _ts
31 nfcv _tT
32 1 30 nffv _tFs
33 nfcv _t
34 nfcv _tB
35 32 33 34 nfbr tFsB
36 fveq2 t=sFt=Fs
37 36 breq1d t=sFtBFsB
38 30 31 35 37 elrabf stT|FtBsTFsB
39 29 38 bitr4di φsF-1−∞BstT|FtB
40 39 eqrdv φF-1−∞B=tT|FtB
41 40 4 eqtr4di φF-1−∞B=A
42 iocmnfcld B−∞BClsdtopGenran.
43 5 42 syl φ−∞BClsdtopGenran.
44 2 fveq2i ClsdK=ClsdtopGenran.
45 43 44 eleqtrrdi φ−∞BClsdK
46 cnclima FJCnK−∞BClsdKF-1−∞BClsdJ
47 6 45 46 syl2anc φF-1−∞BClsdJ
48 41 47 eqeltrrd φAClsdJ