Metamath Proof Explorer


Theorem rhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φUV
rngcrescrhmALTV.c C=RngCatALTVU
rngcrescrhmALTV.r φR=RingU
rngcrescrhmALTV.h H=RingHomR×R
Assertion rhmsubcALTV φHSubcatRngCatALTVU

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φUV
2 rngcrescrhmALTV.c C=RngCatALTVU
3 rngcrescrhmALTV.r φR=RingU
4 rngcrescrhmALTV.h H=RingHomR×R
5 eqidd φRngU=RngU
6 1 3 5 rhmsscrnghm φRingHomR×RcatRngHomRngU×RngU
7 4 a1i φH=RingHomR×R
8 eqid RngCatALTVU=RngCatALTVU
9 eqid RngU=RngU
10 eqid Hom𝑓RngCatALTVU=Hom𝑓RngCatALTVU
11 8 9 1 10 rngchomrnghmresALTV φHom𝑓RngCatALTVU=RngHomRngU×RngU
12 6 7 11 3brtr4d φHcatHom𝑓RngCatALTVU
13 1 2 3 4 rhmsubcALTVlem3 φxRIdRngCatALTVUxxHx
14 1 2 3 4 rhmsubcALTVlem4 φxRyRzRfxHygyHzgxycompRngCatALTVUzfxHz
15 14 ralrimivva φxRyRzRfxHygyHzgxycompRngCatALTVUzfxHz
16 15 ralrimivva φxRyRzRfxHygyHzgxycompRngCatALTVUzfxHz
17 13 16 jca φxRIdRngCatALTVUxxHxyRzRfxHygyHzgxycompRngCatALTVUzfxHz
18 17 ralrimiva φxRIdRngCatALTVUxxHxyRzRfxHygyHzgxycompRngCatALTVUzfxHz
19 eqid IdRngCatALTVU=IdRngCatALTVU
20 eqid compRngCatALTVU=compRngCatALTVU
21 8 rngccatALTV UVRngCatALTVUCat
22 1 21 syl φRngCatALTVUCat
23 1 2 3 4 rhmsubcALTVlem1 φHFnR×R
24 10 19 20 22 23 issubc2 φHSubcatRngCatALTVUHcatHom𝑓RngCatALTVUxRIdRngCatALTVUxxHxyRzRfxHygyHzgxycompRngCatALTVUzfxHz
25 12 18 24 mpbir2and φHSubcatRngCatALTVU