Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcrescrhmALTV.u | |
|
rngcrescrhmALTV.c | |
||
rngcrescrhmALTV.r | |
||
rngcrescrhmALTV.h | |
||
Assertion | rhmsubcALTV | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.u | |
|
2 | rngcrescrhmALTV.c | |
|
3 | rngcrescrhmALTV.r | |
|
4 | rngcrescrhmALTV.h | |
|
5 | eqidd | |
|
6 | 1 3 5 | rhmsscrnghm | |
7 | 4 | a1i | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 8 9 1 10 | rngchomrnghmresALTV | |
12 | 6 7 11 | 3brtr4d | |
13 | 1 2 3 4 | rhmsubcALTVlem3 | |
14 | 1 2 3 4 | rhmsubcALTVlem4 | |
15 | 14 | ralrimivva | |
16 | 15 | ralrimivva | |
17 | 13 16 | jca | |
18 | 17 | ralrimiva | |
19 | eqid | |
|
20 | eqid | |
|
21 | 8 | rngccatALTV | |
22 | 1 21 | syl | |
23 | 1 2 3 4 | rhmsubcALTVlem1 | |
24 | 10 19 20 22 23 | issubc2 | |
25 | 12 18 24 | mpbir2and | |