Metamath Proof Explorer


Theorem rhmsubcALTVlem3

Description: Lemma 3 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φUV
rngcrescrhmALTV.c C=RngCatALTVU
rngcrescrhmALTV.r φR=RingU
rngcrescrhmALTV.h H=RingHomR×R
Assertion rhmsubcALTVlem3 φxRIdRngCatALTVUxxHx

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φUV
2 rngcrescrhmALTV.c C=RngCatALTVU
3 rngcrescrhmALTV.r φR=RingU
4 rngcrescrhmALTV.h H=RingHomR×R
5 3 eleq2d φxRxRingU
6 elinel1 xRingUxRing
7 5 6 syl6bi φxRxRing
8 7 imp φxRxRing
9 eqid Basex=Basex
10 9 idrhm xRingIBasexxRingHomx
11 8 10 syl φxRIBasexxRingHomx
12 1 adantr φxRUV
13 eqid RngCatALTVU=RngCatALTVU
14 eqid BaseRngCatALTVU=BaseRngCatALTVU
15 13 14 rngccatidALTV UVRngCatALTVUCatIdRngCatALTVU=yBaseRngCatALTVUIBasey
16 simpr RngCatALTVUCatIdRngCatALTVU=yBaseRngCatALTVUIBaseyIdRngCatALTVU=yBaseRngCatALTVUIBasey
17 12 15 16 3syl φxRIdRngCatALTVU=yBaseRngCatALTVUIBasey
18 fveq2 y=xBasey=Basex
19 18 reseq2d y=xIBasey=IBasex
20 19 adantl φxRy=xIBasey=IBasex
21 incom RingU=URing
22 3 21 eqtrdi φR=URing
23 22 eleq2d φxRxURing
24 ringrng xRingxRng
25 24 anim2i xUxRingxUxRng
26 elin xURingxUxRing
27 elin xURngxUxRng
28 25 26 27 3imtr4i xURingxURng
29 23 28 syl6bi φxRxURng
30 29 imp φxRxURng
31 2 eqcomi RngCatALTVU=C
32 31 fveq2i BaseRngCatALTVU=BaseC
33 2 32 1 rngcbasALTV φBaseRngCatALTVU=URng
34 33 adantr φxRBaseRngCatALTVU=URng
35 30 34 eleqtrrd φxRxBaseRngCatALTVU
36 fvexd φxRBasexV
37 36 resiexd φxRIBasexV
38 17 20 35 37 fvmptd φxRIdRngCatALTVUx=IBasex
39 1 2 3 4 rhmsubcALTVlem2 φxRxRxHx=xRingHomx
40 39 3anidm23 φxRxHx=xRingHomx
41 11 38 40 3eltr4d φxRIdRngCatALTVUxxHx