Description: Lemma 4 for rhmsubc . (Contributed by AV, 2-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcrescrhm.u | |
|
rngcrescrhm.c | |
||
rngcrescrhm.r | |
||
rngcrescrhm.h | |
||
Assertion | rhmsubclem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.u | |
|
2 | rngcrescrhm.c | |
|
3 | rngcrescrhm.r | |
|
4 | rngcrescrhm.h | |
|
5 | simpl | |
|
6 | 5 | adantr | |
7 | simpr | |
|
8 | 7 | adantr | |
9 | simpl | |
|
10 | 9 | adantl | |
11 | 1 2 3 4 | rhmsubclem2 | |
12 | 6 8 10 11 | syl3anc | |
13 | 12 | eleq2d | |
14 | simpr | |
|
15 | 14 | adantl | |
16 | 1 2 3 4 | rhmsubclem2 | |
17 | 6 10 15 16 | syl3anc | |
18 | 17 | eleq2d | |
19 | 13 18 | anbi12d | |
20 | rhmco | |
|
21 | 20 | ancoms | |
22 | 19 21 | syl6bi | |
23 | 22 | imp | |
24 | 1 | ad3antrrr | |
25 | 2 | eqcomi | |
26 | 25 | fveq2i | |
27 | inss2 | |
|
28 | 3 27 | eqsstrdi | |
29 | 28 | sselda | |
30 | 29 | adantr | |
31 | 30 | adantr | |
32 | 28 | sseld | |
33 | 32 | adantrd | |
34 | 33 | adantr | |
35 | 34 | imp | |
36 | 35 | adantr | |
37 | 28 | sseld | |
38 | 37 | adantld | |
39 | 38 | adantr | |
40 | 39 | imp | |
41 | 40 | adantr | |
42 | 4 | oveqi | |
43 | 8 10 | ovresd | |
44 | 42 43 | eqtrid | |
45 | 44 | eleq2d | |
46 | eqid | |
|
47 | eqid | |
|
48 | 46 47 | rhmf | |
49 | 45 48 | syl6bi | |
50 | 49 | com12 | |
51 | 50 | adantr | |
52 | 51 | impcom | |
53 | 4 | oveqi | |
54 | ovres | |
|
55 | 54 | adantl | |
56 | 53 55 | eqtrid | |
57 | 56 | eleq2d | |
58 | eqid | |
|
59 | 47 58 | rhmf | |
60 | 57 59 | syl6bi | |
61 | 60 | com12 | |
62 | 61 | adantl | |
63 | 62 | impcom | |
64 | 2 24 26 31 36 41 52 63 | rngcco | |
65 | 1 2 3 4 | rhmsubclem2 | |
66 | 6 8 15 65 | syl3anc | |
67 | 66 | adantr | |
68 | 23 64 67 | 3eltr4d | |