Metamath Proof Explorer


Theorem rhmsubclem4

Description: Lemma 4 for rhmsubc . (Contributed by AV, 2-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u φUV
rngcrescrhm.c C=RngCatU
rngcrescrhm.r φR=RingU
rngcrescrhm.h H=RingHomR×R
Assertion rhmsubclem4 φxRyRzRfxHygyHzgxycompRngCatUzfxHz

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u φUV
2 rngcrescrhm.c C=RngCatU
3 rngcrescrhm.r φR=RingU
4 rngcrescrhm.h H=RingHomR×R
5 simpl φxRφ
6 5 adantr φxRyRzRφ
7 simpr φxRxR
8 7 adantr φxRyRzRxR
9 simpl yRzRyR
10 9 adantl φxRyRzRyR
11 1 2 3 4 rhmsubclem2 φxRyRxHy=xRingHomy
12 6 8 10 11 syl3anc φxRyRzRxHy=xRingHomy
13 12 eleq2d φxRyRzRfxHyfxRingHomy
14 simpr yRzRzR
15 14 adantl φxRyRzRzR
16 1 2 3 4 rhmsubclem2 φyRzRyHz=yRingHomz
17 6 10 15 16 syl3anc φxRyRzRyHz=yRingHomz
18 17 eleq2d φxRyRzRgyHzgyRingHomz
19 13 18 anbi12d φxRyRzRfxHygyHzfxRingHomygyRingHomz
20 rhmco gyRingHomzfxRingHomygfxRingHomz
21 20 ancoms fxRingHomygyRingHomzgfxRingHomz
22 19 21 syl6bi φxRyRzRfxHygyHzgfxRingHomz
23 22 imp φxRyRzRfxHygyHzgfxRingHomz
24 1 ad3antrrr φxRyRzRfxHygyHzUV
25 2 eqcomi RngCatU=C
26 25 fveq2i compRngCatU=compC
27 inss2 RingUU
28 3 27 eqsstrdi φRU
29 28 sselda φxRxU
30 29 adantr φxRyRzRxU
31 30 adantr φxRyRzRfxHygyHzxU
32 28 sseld φyRyU
33 32 adantrd φyRzRyU
34 33 adantr φxRyRzRyU
35 34 imp φxRyRzRyU
36 35 adantr φxRyRzRfxHygyHzyU
37 28 sseld φzRzU
38 37 adantld φyRzRzU
39 38 adantr φxRyRzRzU
40 39 imp φxRyRzRzU
41 40 adantr φxRyRzRfxHygyHzzU
42 4 oveqi xHy=xRingHomR×Ry
43 8 10 ovresd φxRyRzRxRingHomR×Ry=xRingHomy
44 42 43 eqtrid φxRyRzRxHy=xRingHomy
45 44 eleq2d φxRyRzRfxHyfxRingHomy
46 eqid Basex=Basex
47 eqid Basey=Basey
48 46 47 rhmf fxRingHomyf:BasexBasey
49 45 48 syl6bi φxRyRzRfxHyf:BasexBasey
50 49 com12 fxHyφxRyRzRf:BasexBasey
51 50 adantr fxHygyHzφxRyRzRf:BasexBasey
52 51 impcom φxRyRzRfxHygyHzf:BasexBasey
53 4 oveqi yHz=yRingHomR×Rz
54 ovres yRzRyRingHomR×Rz=yRingHomz
55 54 adantl φxRyRzRyRingHomR×Rz=yRingHomz
56 53 55 eqtrid φxRyRzRyHz=yRingHomz
57 56 eleq2d φxRyRzRgyHzgyRingHomz
58 eqid Basez=Basez
59 47 58 rhmf gyRingHomzg:BaseyBasez
60 57 59 syl6bi φxRyRzRgyHzg:BaseyBasez
61 60 com12 gyHzφxRyRzRg:BaseyBasez
62 61 adantl fxHygyHzφxRyRzRg:BaseyBasez
63 62 impcom φxRyRzRfxHygyHzg:BaseyBasez
64 2 24 26 31 36 41 52 63 rngcco φxRyRzRfxHygyHzgxycompRngCatUzf=gf
65 1 2 3 4 rhmsubclem2 φxRzRxHz=xRingHomz
66 6 8 15 65 syl3anc φxRyRzRxHz=xRingHomz
67 66 adantr φxRyRzRfxHygyHzxHz=xRingHomz
68 23 64 67 3eltr4d φxRyRzRfxHygyHzgxycompRngCatUzfxHz