Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmsubcsetc.c | |
|
rhmsubcsetc.u | |
||
rhmsubcsetc.b | |
||
rhmsubcsetc.h | |
||
Assertion | rhmsubcsetc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcsetc.c | |
|
2 | rhmsubcsetc.u | |
|
3 | rhmsubcsetc.b | |
|
4 | rhmsubcsetc.h | |
|
5 | 2 3 | rhmsscmap | |
6 | eqid | |
|
7 | 1 2 6 | estrchomfeqhom | |
8 | 1 2 6 | estrchomfval | |
9 | 7 8 | eqtrd | |
10 | 5 4 9 | 3brtr4d | |
11 | 1 2 3 4 | rhmsubcsetclem1 | |
12 | 1 2 3 4 | rhmsubcsetclem2 | |
13 | 11 12 | jca | |
14 | 13 | ralrimiva | |
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 1 | estrccat | |
19 | 2 18 | syl | |
20 | incom | |
|
21 | 3 20 | eqtrdi | |
22 | 21 4 | rhmresfn | |
23 | 15 16 17 19 22 | issubc2 | |
24 | 10 14 23 | mpbir2and | |