Metamath Proof Explorer


Theorem ringpropd

Description: If two structures have the same group components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ringpropd.1 φ B = Base K
ringpropd.2 φ B = Base L
ringpropd.3 φ x B y B x + K y = x + L y
ringpropd.4 φ x B y B x K y = x L y
Assertion ringpropd φ K Ring L Ring

Proof

Step Hyp Ref Expression
1 ringpropd.1 φ B = Base K
2 ringpropd.2 φ B = Base L
3 ringpropd.3 φ x B y B x + K y = x + L y
4 ringpropd.4 φ x B y B x K y = x L y
5 simpll φ K Grp mulGrp K Mnd u B v B w B φ
6 simprll φ K Grp mulGrp K Mnd u B v B w B u B
7 simplrl φ K Grp mulGrp K Mnd u B v B w B K Grp
8 simprlr φ K Grp mulGrp K Mnd u B v B w B v B
9 1 ad2antrr φ K Grp mulGrp K Mnd u B v B w B B = Base K
10 8 9 eleqtrd φ K Grp mulGrp K Mnd u B v B w B v Base K
11 simprr φ K Grp mulGrp K Mnd u B v B w B w B
12 11 9 eleqtrd φ K Grp mulGrp K Mnd u B v B w B w Base K
13 eqid Base K = Base K
14 eqid + K = + K
15 13 14 grpcl K Grp v Base K w Base K v + K w Base K
16 7 10 12 15 syl3anc φ K Grp mulGrp K Mnd u B v B w B v + K w Base K
17 16 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B v + K w B
18 4 oveqrspc2v φ u B v + K w B u K v + K w = u L v + K w
19 5 6 17 18 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u L v + K w
20 3 oveqrspc2v φ v B w B v + K w = v + L w
21 5 8 11 20 syl12anc φ K Grp mulGrp K Mnd u B v B w B v + K w = v + L w
22 21 oveq2d φ K Grp mulGrp K Mnd u B v B w B u L v + K w = u L v + L w
23 19 22 eqtrd φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u L v + L w
24 simplrr φ K Grp mulGrp K Mnd u B v B w B mulGrp K Mnd
25 6 9 eleqtrd φ K Grp mulGrp K Mnd u B v B w B u Base K
26 eqid mulGrp K = mulGrp K
27 26 13 mgpbas Base K = Base mulGrp K
28 eqid K = K
29 26 28 mgpplusg K = + mulGrp K
30 27 29 mndcl mulGrp K Mnd u Base K v Base K u K v Base K
31 24 25 10 30 syl3anc φ K Grp mulGrp K Mnd u B v B w B u K v Base K
32 31 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B u K v B
33 27 29 mndcl mulGrp K Mnd u Base K w Base K u K w Base K
34 24 25 12 33 syl3anc φ K Grp mulGrp K Mnd u B v B w B u K w Base K
35 34 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B u K w B
36 3 oveqrspc2v φ u K v B u K w B u K v + K u K w = u K v + L u K w
37 5 32 35 36 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K v + K u K w = u K v + L u K w
38 4 oveqrspc2v φ u B v B u K v = u L v
39 5 6 8 38 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K v = u L v
40 4 oveqrspc2v φ u B w B u K w = u L w
41 5 6 11 40 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K w = u L w
42 39 41 oveq12d φ K Grp mulGrp K Mnd u B v B w B u K v + L u K w = u L v + L u L w
43 37 42 eqtrd φ K Grp mulGrp K Mnd u B v B w B u K v + K u K w = u L v + L u L w
44 23 43 eqeq12d φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u L v + L w = u L v + L u L w
45 13 14 grpcl K Grp u Base K v Base K u + K v Base K
46 7 25 10 45 syl3anc φ K Grp mulGrp K Mnd u B v B w B u + K v Base K
47 46 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B u + K v B
48 4 oveqrspc2v φ u + K v B w B u + K v K w = u + K v L w
49 5 47 11 48 syl12anc φ K Grp mulGrp K Mnd u B v B w B u + K v K w = u + K v L w
50 3 oveqrspc2v φ u B v B u + K v = u + L v
51 5 6 8 50 syl12anc φ K Grp mulGrp K Mnd u B v B w B u + K v = u + L v
52 51 oveq1d φ K Grp mulGrp K Mnd u B v B w B u + K v L w = u + L v L w
53 49 52 eqtrd φ K Grp mulGrp K Mnd u B v B w B u + K v K w = u + L v L w
54 27 29 mndcl mulGrp K Mnd v Base K w Base K v K w Base K
55 24 10 12 54 syl3anc φ K Grp mulGrp K Mnd u B v B w B v K w Base K
56 55 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B v K w B
57 3 oveqrspc2v φ u K w B v K w B u K w + K v K w = u K w + L v K w
58 5 35 56 57 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K w + K v K w = u K w + L v K w
59 4 oveqrspc2v φ v B w B v K w = v L w
60 5 8 11 59 syl12anc φ K Grp mulGrp K Mnd u B v B w B v K w = v L w
61 41 60 oveq12d φ K Grp mulGrp K Mnd u B v B w B u K w + L v K w = u L w + L v L w
62 58 61 eqtrd φ K Grp mulGrp K Mnd u B v B w B u K w + K v K w = u L w + L v L w
63 53 62 eqeq12d φ K Grp mulGrp K Mnd u B v B w B u + K v K w = u K w + K v K w u + L v L w = u L w + L v L w
64 44 63 anbi12d φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
65 64 anassrs φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
66 65 ralbidva φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
67 66 2ralbidva φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u B v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
68 1 adantr φ K Grp mulGrp K Mnd B = Base K
69 68 raleqdv φ K Grp mulGrp K Mnd w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
70 68 69 raleqbidv φ K Grp mulGrp K Mnd v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
71 68 70 raleqbidv φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
72 2 adantr φ K Grp mulGrp K Mnd B = Base L
73 72 raleqdv φ K Grp mulGrp K Mnd w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
74 72 73 raleqbidv φ K Grp mulGrp K Mnd v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
75 72 74 raleqbidv φ K Grp mulGrp K Mnd u B v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
76 67 71 75 3bitr3d φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
77 76 pm5.32da φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
78 df-3an K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
79 df-3an K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
80 77 78 79 3bitr4g φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
81 1 2 3 grppropd φ K Grp L Grp
82 1 27 eqtrdi φ B = Base mulGrp K
83 eqid mulGrp L = mulGrp L
84 eqid Base L = Base L
85 83 84 mgpbas Base L = Base mulGrp L
86 2 85 eqtrdi φ B = Base mulGrp L
87 29 oveqi x K y = x + mulGrp K y
88 eqid L = L
89 83 88 mgpplusg L = + mulGrp L
90 89 oveqi x L y = x + mulGrp L y
91 4 87 90 3eqtr3g φ x B y B x + mulGrp K y = x + mulGrp L y
92 82 86 91 mndpropd φ mulGrp K Mnd mulGrp L Mnd
93 81 92 3anbi12d φ K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w L Grp mulGrp L Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
94 80 93 bitrd φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w L Grp mulGrp L Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
95 13 26 14 28 isring K Ring K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
96 eqid + L = + L
97 84 83 96 88 isring L Ring L Grp mulGrp L Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
98 94 95 97 3bitr4g φ K Ring L Ring