Metamath Proof Explorer


Theorem rlimno1

Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rlimno1.1 φsupA*<=+∞
rlimno1.2 φxA1B0
rlimno1.3 φxAB
rlimno1.4 φxAB0
Assertion rlimno1 φ¬xAB𝑂1

Proof

Step Hyp Ref Expression
1 rlimno1.1 φsupA*<=+∞
2 rlimno1.2 φxA1B0
3 rlimno1.3 φxAB
4 rlimno1.4 φxAB0
5 fal ¬
6 3 4 reccld φxA1B
7 6 ralrimiva φxA1B
8 7 adantr φyxA1B
9 simpr φyy
10 1re 1
11 ifcl y1if1yy1
12 9 10 11 sylancl φyif1yy1
13 1rp 1+
14 13 a1i φy1+
15 max1 1y1if1yy1
16 10 9 15 sylancr φy1if1yy1
17 12 14 16 rpgecld φyif1yy1+
18 17 rpreccld φy1if1yy1+
19 2 adantr φyxA1B0
20 8 18 19 rlimi φycxAcx1B0<1if1yy1
21 dmmptg xA1BdomxA1B=A
22 7 21 syl φdomxA1B=A
23 rlimss xA1B0domxA1B
24 2 23 syl φdomxA1B
25 22 24 eqsstrrd φA
26 25 adantr φyA
27 rexanre AcxAcx1B0<1if1yy1BycxAcx1B0<1if1yy1cxAcxBy
28 26 27 syl φycxAcx1B0<1if1yy1BycxAcx1B0<1if1yy1cxAcxBy
29 ressxr *
30 25 29 sstrdi φA*
31 supxrunb1 A*cxAcxsupA*<=+∞
32 30 31 syl φcxAcxsupA*<=+∞
33 1 32 mpbird φcxAcx
34 33 adantr φycxAcx
35 r19.29 cxAcxcxAcx1B0<1if1yy1BycxAcxxAcx1B0<1if1yy1By
36 r19.29r xAcxxAcx1B0<1if1yy1ByxAcxcx1B0<1if1yy1By
37 3 adantlr φyxAB
38 37 adantr φyxAByB
39 4 adantlr φyxAB0
40 39 adantr φyxAByB0
41 38 40 reccld φyxABy1B
42 41 subid1d φyxABy1B0=1B
43 42 fveq2d φyxABy1B0=1B
44 1cnd φyxABy1
45 44 38 40 absdivd φyxABy1B=1B
46 10 a1i φyxABy1
47 0le1 01
48 47 a1i φyxABy01
49 46 48 absidd φyxABy1=1
50 49 oveq1d φyxABy1B=1B
51 43 45 50 3eqtrd φyxABy1B0=1B
52 17 ad2antrr φyxAByif1yy1+
53 52 rprecred φyxABy1if1yy1
54 37 39 absrpcld φyxAB+
55 54 adantr φyxAByB+
56 55 rprecred φyxABy1B
57 55 rpred φyxAByB
58 9 ad2antrr φyxAByy
59 12 ad2antrr φyxAByif1yy1
60 simpr φyxAByBy
61 max2 1yyif1yy1
62 10 58 61 sylancr φyxAByyif1yy1
63 57 58 59 60 62 letrd φyxAByBif1yy1
64 55 52 46 48 63 lediv2ad φyxABy1if1yy11B
65 53 56 64 lensymd φyxABy¬1B<1if1yy1
66 51 65 eqnbrtrd φyxABy¬1B0<1if1yy1
67 66 pm2.21d φyxABy1B0<1if1yy1
68 67 expimpd φyxABy1B0<1if1yy1
69 68 ancomsd φyxA1B0<1if1yy1By
70 69 imim2d φyxAcx1B0<1if1yy1Bycx
71 70 impcomd φyxAcxcx1B0<1if1yy1By
72 71 rexlimdva φyxAcxcx1B0<1if1yy1By
73 36 72 syl5 φyxAcxxAcx1B0<1if1yy1By
74 73 rexlimdvw φycxAcxxAcx1B0<1if1yy1By
75 35 74 syl5 φycxAcxcxAcx1B0<1if1yy1By
76 34 75 mpand φycxAcx1B0<1if1yy1By
77 28 76 sylbird φycxAcx1B0<1if1yy1cxAcxBy
78 20 77 mpand φycxAcxBy
79 5 78 mtoi φy¬cxAcxBy
80 79 nrexdv φ¬ycxAcxBy
81 25 3 elo1mpt φxAB𝑂1cyxAcxBy
82 rexcom cyxAcxByycxAcxBy
83 81 82 bitrdi φxAB𝑂1ycxAcxBy
84 80 83 mtbird φ¬xAB𝑂1