| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngqiprngfu.r |  | 
						
							| 2 |  | rngqiprngfu.i |  | 
						
							| 3 |  | rngqiprngfu.j |  | 
						
							| 4 |  | rngqiprngfu.u |  | 
						
							| 5 |  | rngqiprngfu.b |  | 
						
							| 6 |  | rngqiprngfu.t |  | 
						
							| 7 |  | rngqiprngfu.1 |  | 
						
							| 8 |  | rngqiprngfu.g |  | 
						
							| 9 |  | rngqiprngfu.q |  | 
						
							| 10 |  | rngqiprngfu.v |  | 
						
							| 11 |  | rngqiprngfu.e |  | 
						
							| 12 |  | rngqiprngfu.m |  | 
						
							| 13 |  | rngqiprngfu.a |  | 
						
							| 14 |  | rngqiprngfu.n |  | 
						
							| 15 | 14 | oveq2i |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 1 2 3 4 5 6 7 | rngqiprng1elbas |  | 
						
							| 18 |  | rnggrp |  | 
						
							| 19 | 1 18 | syl |  | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprngfulem2 |  | 
						
							| 21 | 5 6 | rngcl |  | 
						
							| 22 | 1 17 20 21 | syl3anc |  | 
						
							| 23 | 5 12 | grpsubcl |  | 
						
							| 24 | 19 20 22 23 | syl3anc |  | 
						
							| 25 | 5 13 6 | rngdi |  | 
						
							| 26 | 1 17 24 17 25 | syl13anc |  | 
						
							| 27 | 5 6 12 1 17 20 22 | rngsubdi |  | 
						
							| 28 | 5 6 | rngass |  | 
						
							| 29 | 1 17 17 20 28 | syl13anc |  | 
						
							| 30 | 3 6 | ressmulr |  | 
						
							| 31 | 2 30 | syl |  | 
						
							| 32 | 31 | oveqd |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 7 | ringidcl |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 33 35 7 | ringlidm |  | 
						
							| 37 | 4 34 36 | syl2anc2 |  | 
						
							| 38 | 32 37 | eqtrd |  | 
						
							| 39 | 38 | oveq1d |  | 
						
							| 40 | 29 39 | eqtr3d |  | 
						
							| 41 | 40 | oveq2d |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 5 42 12 | grpsubid |  | 
						
							| 44 | 19 22 43 | syl2anc |  | 
						
							| 45 | 27 41 44 | 3eqtrd |  | 
						
							| 46 | 45 38 | oveq12d |  | 
						
							| 47 | 26 46 | eqtrd |  | 
						
							| 48 | 5 13 42 19 17 | grplidd |  | 
						
							| 49 | 16 47 48 | 3eqtrd |  |