Metamath Proof Explorer


Theorem rtprmirr

Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion rtprmirr PN2P1N

Proof

Step Hyp Ref Expression
1 prmnn PP
2 1 adantr PN2P
3 2 nnred PN2P
4 0red PN20
5 2 nngt0d PN20<P
6 4 3 5 ltled PN20P
7 eluzelre N2N
8 7 adantl PN2N
9 eluz2n0 N2N0
10 9 adantl PN2N0
11 8 10 rereccld PN21N
12 3 6 11 recxpcld PN2P1N
13 3 adantr PN2P1NP
14 6 adantr PN2P1N0P
15 11 adantr PN2P1N1N
16 13 14 15 recxpcld PN2P1NP1N
17 7 ad2antlr PN2P1NN
18 eluz2gt1 N21<N
19 18 ad2antlr PN2P1N1<N
20 recgt1i N1<N0<1N1N<1
21 20 simprd N1<N1N<1
22 17 19 21 syl2anc PN2P1N1N<1
23 simpll PN2P1NP
24 prmgt1 P1<P
25 23 24 syl PN2P1N1<P
26 1red PN2P1N1
27 13 25 15 26 cxpltd PN2P1N1N<1P1N<P1
28 22 27 mpbid PN2P1NP1N<P1
29 13 recnd PN2P1NP
30 29 cxp1d PN2P1NP1=P
31 28 30 breqtrd PN2P1NP1N<P
32 16 31 ltned PN2P1NP1NP
33 32 neneqd PN2P1N¬P1N=P
34 29 cxp0d PN2P1NP0=1
35 20 simpld N1<N0<1N
36 17 19 35 syl2anc PN2P1N0<1N
37 0red PN2P1N0
38 13 25 37 15 cxpltd PN2P1N0<1NP0<P1N
39 36 38 mpbid PN2P1NP0<P1N
40 34 39 eqbrtrrd PN2P1N1<P1N
41 26 40 gtned PN2P1NP1N1
42 41 neneqd PN2P1N¬P1N=1
43 dvdsprime PP1NP1NPP1N=PP1N=1
44 43 adantlr PN2P1NP1NPP1N=PP1N=1
45 44 biimpd PN2P1NP1NPP1N=PP1N=1
46 33 42 45 mtord PN2P1N¬P1NP
47 nan PN2¬P1NP1NPPN2P1N¬P1NP
48 46 47 mpbir PN2¬P1NP1NP
49 prmz PP
50 49 3ad2ant1 PN2P1NP
51 eluz2nn N2N
52 51 3ad2ant2 PN2P1NN
53 simp3 PN2P1NP1N
54 zrtdvds PNP1NP1NP
55 50 52 53 54 syl3anc PN2P1NP1NP
56 55 3expia PN2P1NP1NP
57 56 ancld PN2P1NP1NP1NP
58 48 57 mtod PN2¬P1N
59 1 nnrpd PP+
60 59 3ad2ant1 PN2P1NP+
61 7 3ad2ant2 PN2P1NN
62 9 3ad2ant2 PN2P1NN0
63 61 62 rereccld PN2P1N1N
64 60 63 cxpgt0d PN2P1N0<P1N
65 64 3expia PN2P1N0<P1N
66 65 ancld PN2P1NP1N0<P1N
67 elnnz P1NP1N0<P1N
68 66 67 syl6ibr PN2P1NP1N
69 58 68 mtod PN2¬P1N
70 49 3ad2ant1 PN2P1NP
71 51 3ad2ant2 PN2P1NN
72 simp3 PN2P1NP1N
73 zrtelqelz PNP1NP1N
74 70 71 72 73 syl3anc PN2P1NP1N
75 74 3expia PN2P1NP1N
76 69 75 mtod PN2¬P1N
77 12 76 eldifd PN2P1N