Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Exponents and divisibility
rtprmirr
Next ⟩
Real subtraction
Metamath Proof Explorer
Ascii
Unicode
Theorem
rtprmirr
Description:
The root of a prime number is irrational.
(Contributed by
Steven Nguyen
, 6-Apr-2023)
Ref
Expression
Assertion
rtprmirr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℝ
∖
ℚ
Proof
Step
Hyp
Ref
Expression
1
prmnn
⊢
P
∈
ℙ
→
P
∈
ℕ
2
1
adantr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
∈
ℕ
3
2
nnred
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
∈
ℝ
4
0red
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
0
∈
ℝ
5
2
nngt0d
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
0
<
P
6
4
3
5
ltled
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
0
≤
P
7
eluzelre
⊢
N
∈
ℤ
≥
2
→
N
∈
ℝ
8
7
adantl
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
N
∈
ℝ
9
eluz2n0
⊢
N
∈
ℤ
≥
2
→
N
≠
0
10
9
adantl
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
N
≠
0
11
8
10
rereccld
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
1
N
∈
ℝ
12
3
6
11
recxpcld
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℝ
13
3
adantr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
∈
ℝ
14
6
adantr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
0
≤
P
15
11
adantr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
N
∈
ℝ
16
13
14
15
recxpcld
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
∈
ℝ
17
7
ad2antlr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
N
∈
ℝ
18
eluz2gt1
⊢
N
∈
ℤ
≥
2
→
1
<
N
19
18
ad2antlr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
<
N
20
recgt1i
⊢
N
∈
ℝ
∧
1
<
N
→
0
<
1
N
∧
1
N
<
1
21
20
simprd
⊢
N
∈
ℝ
∧
1
<
N
→
1
N
<
1
22
17
19
21
syl2anc
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
N
<
1
23
simpll
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
∈
ℙ
24
prmgt1
⊢
P
∈
ℙ
→
1
<
P
25
23
24
syl
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
<
P
26
1red
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
∈
ℝ
27
13
25
15
26
cxpltd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
N
<
1
↔
P
1
N
<
P
1
28
22
27
mpbid
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
<
P
1
29
13
recnd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
∈
ℂ
30
29
cxp1d
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
=
P
31
28
30
breqtrd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
<
P
32
16
31
ltned
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
≠
P
33
32
neneqd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
¬
P
1
N
=
P
34
29
cxp0d
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
0
=
1
35
20
simpld
⊢
N
∈
ℝ
∧
1
<
N
→
0
<
1
N
36
17
19
35
syl2anc
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
0
<
1
N
37
0red
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
0
∈
ℝ
38
13
25
37
15
cxpltd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
0
<
1
N
↔
P
0
<
P
1
N
39
36
38
mpbid
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
0
<
P
1
N
40
34
39
eqbrtrrd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
1
<
P
1
N
41
26
40
gtned
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
≠
1
42
41
neneqd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
¬
P
1
N
=
1
43
dvdsprime
⊢
P
∈
ℙ
∧
P
1
N
∈
ℕ
→
P
1
N
∥
P
↔
P
1
N
=
P
∨
P
1
N
=
1
44
43
adantlr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
∥
P
↔
P
1
N
=
P
∨
P
1
N
=
1
45
44
biimpd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
∥
P
→
P
1
N
=
P
∨
P
1
N
=
1
46
33
42
45
mtord
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
¬
P
1
N
∥
P
47
nan
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
¬
P
1
N
∈
ℕ
∧
P
1
N
∥
P
↔
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
¬
P
1
N
∥
P
48
46
47
mpbir
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
¬
P
1
N
∈
ℕ
∧
P
1
N
∥
P
49
prmz
⊢
P
∈
ℙ
→
P
∈
ℤ
50
49
3ad2ant1
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
∈
ℤ
51
eluz2nn
⊢
N
∈
ℤ
≥
2
→
N
∈
ℕ
52
51
3ad2ant2
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
N
∈
ℕ
53
simp3
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
∈
ℕ
54
zrtdvds
⊢
P
∈
ℤ
∧
N
∈
ℕ
∧
P
1
N
∈
ℕ
→
P
1
N
∥
P
55
50
52
53
54
syl3anc
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℕ
→
P
1
N
∥
P
56
55
3expia
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℕ
→
P
1
N
∥
P
57
56
ancld
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℕ
→
P
1
N
∈
ℕ
∧
P
1
N
∥
P
58
48
57
mtod
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
¬
P
1
N
∈
ℕ
59
1
nnrpd
⊢
P
∈
ℙ
→
P
∈
ℝ
+
60
59
3ad2ant1
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℤ
→
P
∈
ℝ
+
61
7
3ad2ant2
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℤ
→
N
∈
ℝ
62
9
3ad2ant2
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℤ
→
N
≠
0
63
61
62
rereccld
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℤ
→
1
N
∈
ℝ
64
60
63
cxpgt0d
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℤ
→
0
<
P
1
N
65
64
3expia
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℤ
→
0
<
P
1
N
66
65
ancld
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℤ
→
P
1
N
∈
ℤ
∧
0
<
P
1
N
67
elnnz
⊢
P
1
N
∈
ℕ
↔
P
1
N
∈
ℤ
∧
0
<
P
1
N
68
66
67
syl6ibr
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℤ
→
P
1
N
∈
ℕ
69
58
68
mtod
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
¬
P
1
N
∈
ℤ
70
49
3ad2ant1
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℚ
→
P
∈
ℤ
71
51
3ad2ant2
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℚ
→
N
∈
ℕ
72
simp3
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℚ
→
P
1
N
∈
ℚ
73
zrtelqelz
⊢
P
∈
ℤ
∧
N
∈
ℕ
∧
P
1
N
∈
ℚ
→
P
1
N
∈
ℤ
74
70
71
72
73
syl3anc
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
∧
P
1
N
∈
ℚ
→
P
1
N
∈
ℤ
75
74
3expia
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℚ
→
P
1
N
∈
ℤ
76
69
75
mtod
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
¬
P
1
N
∈
ℚ
77
12
76
eldifd
⊢
P
∈
ℙ
∧
N
∈
ℤ
≥
2
→
P
1
N
∈
ℝ
∖
ℚ