Metamath Proof Explorer


Theorem rtrclreclem3

Description: The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypothesis rtrclreclem.1 φ Rel R
Assertion rtrclreclem3 φ t*rec R t*rec R t*rec R

Proof

Step Hyp Ref Expression
1 rtrclreclem.1 φ Rel R
2 df-co t*rec R t*rec R = e g | f e t*rec R f f t*rec R g
3 elopab d e g | f e t*rec R f f t*rec R g e g d = e g f e t*rec R f f t*rec R g
4 eqeq1 d = e g d = e g e g = e g
5 4 anbi1d d = e g d = e g f e t*rec R f f t*rec R g φ e g = e g f e t*rec R f f t*rec R g φ
6 simprr e g = e g f e t*rec R f f t*rec R g φ φ
7 simprl e g = e g f e t*rec R f f t*rec R g φ f e t*rec R f f t*rec R g
8 simpl e t*rec R f f t*rec R g φ e t*rec R f
9 simprr e t*rec R f f t*rec R g φ φ
10 1 dfrtrclrec2 φ e t*rec R f n 0 e R r n f
11 9 10 syl e t*rec R f f t*rec R g φ e t*rec R f n 0 e R r n f
12 8 11 mpbid e t*rec R f f t*rec R g φ n 0 e R r n f
13 simprl e t*rec R f f t*rec R g φ e R r n f n 0 f t*rec R g
14 simprrl e t*rec R f f t*rec R g φ e R r n f n 0 φ
15 1 dfrtrclrec2 φ f t*rec R g m 0 f R r m g
16 14 15 syl e t*rec R f f t*rec R g φ e R r n f n 0 f t*rec R g m 0 f R r m g
17 13 16 mpbid e t*rec R f f t*rec R g φ e R r n f n 0 m 0 f R r m g
18 simprrl φ e R r n f n 0 f R r m g m 0 n 0
19 18 adantl f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
20 19 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
21 simprr n 0 f R r m g m 0 m 0
22 21 adantl e R r n f n 0 f R r m g m 0 m 0
23 22 adantl φ e R r n f n 0 f R r m g m 0 m 0
24 23 adantl f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
25 24 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
26 20 25 nn0addcld e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n + m 0
27 20 adantl n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
28 27 nn0cnd n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n
29 25 adantl n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
30 29 nn0cnd n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m
31 28 30 addcomd n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n + m = m + n
32 eleq1 n + m = m + n n + m 0 m + n 0
33 32 anbi1d n + m = m + n n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0
34 simprrl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 φ
35 34 adantl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 φ
36 35 1 syl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 Rel R
37 25 adantl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
38 20 adantl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
39 36 37 38 relexpaddd m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r m + n
40 oveq2 n + m = m + n R r n + m = R r m + n
41 40 eqeq2d n + m = m + n R r m R r n = R r n + m R r m R r n = R r m + n
42 39 41 syl5ibr n + m = m + n m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r n + m
43 33 42 sylbid n + m = m + n n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r n + m
44 31 43 mpcom n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r n + m
45 simprrl f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r n f
46 45 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r n f
47 simprrl e R r n f n 0 f R r m g m 0 f R r m g
48 47 adantl φ e R r n f n 0 f R r m g m 0 f R r m g
49 48 adantl f t*rec R g φ e R r n f n 0 f R r m g m 0 f R r m g
50 49 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 f R r m g
51 50 adantl n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 f R r m g
52 vex f V
53 breq2 h = f e R r n h e R r n f
54 breq1 h = f h R r m g f R r m g
55 53 54 anbi12d h = f e R r n h h R r m g e R r n f f R r m g
56 52 55 spcev e R r n f f R r m g h e R r n h h R r m g
57 46 51 56 syl2an2 n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 h e R r n h h R r m g
58 vex e V
59 vex g V
60 58 59 brco e R r m R r n g h e R r n h h R r m g
61 57 60 sylibr n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r m R r n g
62 44 61 breqdi n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r n + m g
63 oveq2 i = n + m R r i = R r n + m
64 63 breqd i = n + m e R r i g e R r n + m g
65 64 rspcev n + m 0 e R r n + m g i 0 e R r i g
66 62 65 syldan n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 i 0 e R r i g
67 26 66 mpancom e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 i 0 e R r i g
68 df-br e t*rec R g e g t*rec R
69 34 1 syl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 Rel R
70 69 dfrtrclrec2 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R g i 0 e R r i g
71 68 70 bitr3id e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R i 0 e R r i g
72 67 71 mpbird e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R
73 72 expcom f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R f e g t*rec R
74 73 expcom φ e R r n f n 0 f R r m g m 0 f t*rec R g e t*rec R f e g t*rec R
75 74 expcom e R r n f n 0 f R r m g m 0 φ f t*rec R g e t*rec R f e g t*rec R
76 75 anassrs e R r n f n 0 f R r m g m 0 φ f t*rec R g e t*rec R f e g t*rec R
77 76 impcom φ e R r n f n 0 f R r m g m 0 f t*rec R g e t*rec R f e g t*rec R
78 77 anassrs φ e R r n f n 0 f R r m g m 0 f t*rec R g e t*rec R f e g t*rec R
79 78 impcom f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R f e g t*rec R
80 79 anassrs f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R f e g t*rec R
81 80 impcom e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R
82 81 anassrs e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R
83 82 expcom f R r m g m 0 e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
84 83 expcom m 0 f R r m g e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
85 84 rexlimiv m 0 f R r m g e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
86 17 85 mpcom e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
87 86 expcom f t*rec R g φ e R r n f n 0 e t*rec R f e g t*rec R
88 87 anassrs f t*rec R g φ e R r n f n 0 e t*rec R f e g t*rec R
89 88 impcom e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
90 89 anassrs e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
91 90 expcom e R r n f n 0 e t*rec R f f t*rec R g φ e g t*rec R
92 91 expcom n 0 e R r n f e t*rec R f f t*rec R g φ e g t*rec R
93 92 rexlimiv n 0 e R r n f e t*rec R f f t*rec R g φ e g t*rec R
94 12 93 mpcom e t*rec R f f t*rec R g φ e g t*rec R
95 94 anassrs e t*rec R f f t*rec R g φ e g t*rec R
96 95 expcom φ e t*rec R f f t*rec R g e g t*rec R
97 96 exlimdv φ f e t*rec R f f t*rec R g e g t*rec R
98 6 7 97 sylc e g = e g f e t*rec R f f t*rec R g φ e g t*rec R
99 eleq1 d = e g d t*rec R e g t*rec R
100 98 99 syl5ibr d = e g e g = e g f e t*rec R f f t*rec R g φ d t*rec R
101 5 100 sylbid d = e g d = e g f e t*rec R f f t*rec R g φ d t*rec R
102 101 anabsi5 d = e g f e t*rec R f f t*rec R g φ d t*rec R
103 102 anassrs d = e g f e t*rec R f f t*rec R g φ d t*rec R
104 103 expcom φ d = e g f e t*rec R f f t*rec R g d t*rec R
105 104 exlimdvv φ e g d = e g f e t*rec R f f t*rec R g d t*rec R
106 3 105 syl5bi φ d e g | f e t*rec R f f t*rec R g d t*rec R
107 eleq2 t*rec R t*rec R = e g | f e t*rec R f f t*rec R g d t*rec R t*rec R d e g | f e t*rec R f f t*rec R g
108 107 imbi1d t*rec R t*rec R = e g | f e t*rec R f f t*rec R g d t*rec R t*rec R d t*rec R d e g | f e t*rec R f f t*rec R g d t*rec R
109 106 108 syl5ibr t*rec R t*rec R = e g | f e t*rec R f f t*rec R g φ d t*rec R t*rec R d t*rec R
110 2 109 ax-mp φ d t*rec R t*rec R d t*rec R
111 110 ssrdv φ t*rec R t*rec R t*rec R