Description: Lemma for ruc . Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ruc.1 | |
|
ruc.2 | |
||
ruc.4 | |
||
ruc.5 | |
||
Assertion | ruclem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.1 | |
|
2 | ruc.2 | |
|
3 | ruc.4 | |
|
4 | ruc.5 | |
|
5 | 4 | fveq1i | |
6 | 0z | |
|
7 | seq1 | |
|
8 | 6 7 | ax-mp | |
9 | 5 8 | eqtri | |
10 | 1 2 3 4 | ruclem4 | |
11 | 9 10 | eqtr3id | |
12 | 0re | |
|
13 | 1re | |
|
14 | opelxpi | |
|
15 | 12 13 14 | mp2an | |
16 | 11 15 | eqeltrdi | |
17 | 1st2nd2 | |
|
18 | 17 | ad2antrl | |
19 | 18 | oveq1d | |
20 | 1 | adantr | |
21 | 2 | adantr | |
22 | xp1st | |
|
23 | 22 | ad2antrl | |
24 | xp2nd | |
|
25 | 24 | ad2antrl | |
26 | simprr | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 20 21 23 25 26 27 28 | ruclem1 | |
30 | 29 | simp1d | |
31 | 19 30 | eqeltrd | |
32 | nn0uz | |
|
33 | 0zd | |
|
34 | 0p1e1 | |
|
35 | 34 | fveq2i | |
36 | nnuz | |
|
37 | 35 36 | eqtr4i | |
38 | 37 | eleq2i | |
39 | 3 | equncomi | |
40 | 39 | fveq1i | |
41 | nnne0 | |
|
42 | 41 | necomd | |
43 | fvunsn | |
|
44 | 42 43 | syl | |
45 | 40 44 | eqtrid | |
46 | 45 | adantl | |
47 | 1 | ffvelcdmda | |
48 | 46 47 | eqeltrd | |
49 | 38 48 | sylan2b | |
50 | 16 31 32 33 49 | seqf2 | |
51 | 4 | feq1i | |
52 | 50 51 | sylibr | |