| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|
| 2 |
|
ruc.2 |
|
| 3 |
|
ruc.4 |
|
| 4 |
|
ruc.5 |
|
| 5 |
4
|
fveq1i |
|
| 6 |
|
0z |
|
| 7 |
|
seq1 |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
5 8
|
eqtri |
|
| 10 |
1 2 3 4
|
ruclem4 |
|
| 11 |
9 10
|
eqtr3id |
|
| 12 |
|
0re |
|
| 13 |
|
1re |
|
| 14 |
|
opelxpi |
|
| 15 |
12 13 14
|
mp2an |
|
| 16 |
11 15
|
eqeltrdi |
|
| 17 |
|
1st2nd2 |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
18
|
oveq1d |
|
| 20 |
1
|
adantr |
|
| 21 |
2
|
adantr |
|
| 22 |
|
xp1st |
|
| 23 |
22
|
ad2antrl |
|
| 24 |
|
xp2nd |
|
| 25 |
24
|
ad2antrl |
|
| 26 |
|
simprr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
20 21 23 25 26 27 28
|
ruclem1 |
|
| 30 |
29
|
simp1d |
|
| 31 |
19 30
|
eqeltrd |
|
| 32 |
|
nn0uz |
|
| 33 |
|
0zd |
|
| 34 |
|
0p1e1 |
|
| 35 |
34
|
fveq2i |
|
| 36 |
|
nnuz |
|
| 37 |
35 36
|
eqtr4i |
|
| 38 |
37
|
eleq2i |
|
| 39 |
3
|
equncomi |
|
| 40 |
39
|
fveq1i |
|
| 41 |
|
nnne0 |
|
| 42 |
41
|
necomd |
|
| 43 |
|
fvunsn |
|
| 44 |
42 43
|
syl |
|
| 45 |
40 44
|
eqtrid |
|
| 46 |
45
|
adantl |
|
| 47 |
1
|
ffvelcdmda |
|
| 48 |
46 47
|
eqeltrd |
|
| 49 |
38 48
|
sylan2b |
|
| 50 |
16 31 32 33 49
|
seqf2 |
|
| 51 |
4
|
feq1i |
|
| 52 |
50 51
|
sylibr |
|