Metamath Proof Explorer


Theorem ruclem6

Description: Lemma for ruc . Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruc.4 C=001F
ruc.5 G=seq0DC
Assertion ruclem6 φG:02

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruc.4 C=001F
4 ruc.5 G=seq0DC
5 4 fveq1i G0=seq0DC0
6 0z 0
7 seq1 0seq0DC0=C0
8 6 7 ax-mp seq0DC0=C0
9 5 8 eqtri G0=C0
10 1 2 3 4 ruclem4 φG0=01
11 9 10 eqtr3id φC0=01
12 0re 0
13 1re 1
14 opelxpi 01012
15 12 13 14 mp2an 012
16 11 15 eqeltrdi φC02
17 1st2nd2 z2z=1stz2ndz
18 17 ad2antrl φz2wz=1stz2ndz
19 18 oveq1d φz2wzDw=1stz2ndzDw
20 1 adantr φz2wF:
21 2 adantr φz2wD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
22 xp1st z21stz
23 22 ad2antrl φz2w1stz
24 xp2nd z22ndz
25 24 ad2antrl φz2w2ndz
26 simprr φz2ww
27 eqid 1st1stz2ndzDw=1st1stz2ndzDw
28 eqid 2nd1stz2ndzDw=2nd1stz2ndzDw
29 20 21 23 25 26 27 28 ruclem1 φz2w1stz2ndzDw21st1stz2ndzDw=if1stz+2ndz2<w1stz1stz+2ndz2+2ndz22nd1stz2ndzDw=if1stz+2ndz2<w1stz+2ndz22ndz
30 29 simp1d φz2w1stz2ndzDw2
31 19 30 eqeltrd φz2wzDw2
32 nn0uz 0=0
33 0zd φ0
34 0p1e1 0+1=1
35 34 fveq2i 0+1=1
36 nnuz =1
37 35 36 eqtr4i 0+1=
38 37 eleq2i z0+1z
39 3 equncomi C=F001
40 39 fveq1i Cz=F001z
41 nnne0 zz0
42 41 necomd z0z
43 fvunsn 0zF001z=Fz
44 42 43 syl zF001z=Fz
45 40 44 eqtrid zCz=Fz
46 45 adantl φzCz=Fz
47 1 ffvelcdmda φzFz
48 46 47 eqeltrd φzCz
49 38 48 sylan2b φz0+1Cz
50 16 31 32 33 49 seqf2 φseq0DC:02
51 4 feq1i G:02seq0DC:02
52 50 51 sylibr φG:02