Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rusgrnumwwlkl1.v | |
|
Assertion | rusgrnumwwlkl1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrnumwwlkl1.v | |
|
2 | 1nn0 | |
|
3 | iswwlksn | |
|
4 | 2 3 | ax-mp | |
5 | eqid | |
|
6 | 1 5 | iswwlks | |
7 | 6 | anbi1i | |
8 | 4 7 | bitri | |
9 | 8 | a1i | |
10 | 9 | anbi1d | |
11 | 1p1e2 | |
|
12 | 11 | eqeq2i | |
13 | 12 | a1i | |
14 | 13 | anbi2d | |
15 | 3anass | |
|
16 | 15 | a1i | |
17 | fveq2 | |
|
18 | hash0 | |
|
19 | 17 18 | eqtrdi | |
20 | 2ne0 | |
|
21 | 20 | nesymi | |
22 | eqeq1 | |
|
23 | 21 22 | mtbiri | |
24 | 19 23 | syl | |
25 | 24 | necon2ai | |
26 | 25 | adantl | |
27 | 26 | biantrurd | |
28 | oveq1 | |
|
29 | 2m1e1 | |
|
30 | 28 29 | eqtrdi | |
31 | 30 | oveq2d | |
32 | 31 | adantl | |
33 | 32 | raleqdv | |
34 | fzo01 | |
|
35 | 34 | raleqi | |
36 | c0ex | |
|
37 | fveq2 | |
|
38 | fv0p1e1 | |
|
39 | 37 38 | preq12d | |
40 | 39 | eleq1d | |
41 | 36 40 | ralsn | |
42 | 35 41 | bitri | |
43 | 33 42 | bitrdi | |
44 | 43 | anbi2d | |
45 | 16 27 44 | 3bitr2d | |
46 | 45 | ex | |
47 | 46 | pm5.32rd | |
48 | 14 47 | bitrd | |
49 | 48 | anbi1d | |
50 | anass | |
|
51 | 49 50 | bitrdi | |
52 | anass | |
|
53 | ancom | |
|
54 | df-3an | |
|
55 | 53 54 | bitr4i | |
56 | 55 | anbi2i | |
57 | 52 56 | bitri | |
58 | 57 | a1i | |
59 | 10 51 58 | 3bitrd | |
60 | 59 | rabbidva2 | |
61 | 60 | fveq2d | |
62 | 1 | rusgrnumwrdl2 | |
63 | 61 62 | eqtrd | |