Metamath Proof Explorer


Theorem rusgrnumwwlkl1

Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypothesis rusgrnumwwlkl1.v V=VtxG
Assertion rusgrnumwwlkl1 GRegUSGraphKPVw1WWalksNG|w0=P=K

Proof

Step Hyp Ref Expression
1 rusgrnumwwlkl1.v V=VtxG
2 1nn0 10
3 iswwlksn 10w1WWalksNGwWWalksGw=1+1
4 2 3 ax-mp w1WWalksNGwWWalksGw=1+1
5 eqid EdgG=EdgG
6 1 5 iswwlks wWWalksGwwWordVi0..^w1wiwi+1EdgG
7 6 anbi1i wWWalksGw=1+1wwWordVi0..^w1wiwi+1EdgGw=1+1
8 4 7 bitri w1WWalksNGwwWordVi0..^w1wiwi+1EdgGw=1+1
9 8 a1i GRegUSGraphKPVw1WWalksNGwwWordVi0..^w1wiwi+1EdgGw=1+1
10 9 anbi1d GRegUSGraphKPVw1WWalksNGw0=PwwWordVi0..^w1wiwi+1EdgGw=1+1w0=P
11 1p1e2 1+1=2
12 11 eqeq2i w=1+1w=2
13 12 a1i GRegUSGraphKPVw=1+1w=2
14 13 anbi2d GRegUSGraphKPVwwWordVi0..^w1wiwi+1EdgGw=1+1wwWordVi0..^w1wiwi+1EdgGw=2
15 3anass wwWordVi0..^w1wiwi+1EdgGwwWordVi0..^w1wiwi+1EdgG
16 15 a1i GRegUSGraphKPVw=2wwWordVi0..^w1wiwi+1EdgGwwWordVi0..^w1wiwi+1EdgG
17 fveq2 w=w=
18 hash0 =0
19 17 18 eqtrdi w=w=0
20 2ne0 20
21 20 nesymi ¬0=2
22 eqeq1 w=0w=20=2
23 21 22 mtbiri w=0¬w=2
24 19 23 syl w=¬w=2
25 24 necon2ai w=2w
26 25 adantl GRegUSGraphKPVw=2w
27 26 biantrurd GRegUSGraphKPVw=2wWordVi0..^w1wiwi+1EdgGwwWordVi0..^w1wiwi+1EdgG
28 oveq1 w=2w1=21
29 2m1e1 21=1
30 28 29 eqtrdi w=2w1=1
31 30 oveq2d w=20..^w1=0..^1
32 31 adantl GRegUSGraphKPVw=20..^w1=0..^1
33 32 raleqdv GRegUSGraphKPVw=2i0..^w1wiwi+1EdgGi0..^1wiwi+1EdgG
34 fzo01 0..^1=0
35 34 raleqi i0..^1wiwi+1EdgGi0wiwi+1EdgG
36 c0ex 0V
37 fveq2 i=0wi=w0
38 fv0p1e1 i=0wi+1=w1
39 37 38 preq12d i=0wiwi+1=w0w1
40 39 eleq1d i=0wiwi+1EdgGw0w1EdgG
41 36 40 ralsn i0wiwi+1EdgGw0w1EdgG
42 35 41 bitri i0..^1wiwi+1EdgGw0w1EdgG
43 33 42 bitrdi GRegUSGraphKPVw=2i0..^w1wiwi+1EdgGw0w1EdgG
44 43 anbi2d GRegUSGraphKPVw=2wWordVi0..^w1wiwi+1EdgGwWordVw0w1EdgG
45 16 27 44 3bitr2d GRegUSGraphKPVw=2wwWordVi0..^w1wiwi+1EdgGwWordVw0w1EdgG
46 45 ex GRegUSGraphKPVw=2wwWordVi0..^w1wiwi+1EdgGwWordVw0w1EdgG
47 46 pm5.32rd GRegUSGraphKPVwwWordVi0..^w1wiwi+1EdgGw=2wWordVw0w1EdgGw=2
48 14 47 bitrd GRegUSGraphKPVwwWordVi0..^w1wiwi+1EdgGw=1+1wWordVw0w1EdgGw=2
49 48 anbi1d GRegUSGraphKPVwwWordVi0..^w1wiwi+1EdgGw=1+1w0=PwWordVw0w1EdgGw=2w0=P
50 anass wWordVw0w1EdgGw=2w0=PwWordVw0w1EdgGw=2w0=P
51 49 50 bitrdi GRegUSGraphKPVwwWordVi0..^w1wiwi+1EdgGw=1+1w0=PwWordVw0w1EdgGw=2w0=P
52 anass wWordVw0w1EdgGw=2w0=PwWordVw0w1EdgGw=2w0=P
53 ancom w0w1EdgGw=2w0=Pw=2w0=Pw0w1EdgG
54 df-3an w=2w0=Pw0w1EdgGw=2w0=Pw0w1EdgG
55 53 54 bitr4i w0w1EdgGw=2w0=Pw=2w0=Pw0w1EdgG
56 55 anbi2i wWordVw0w1EdgGw=2w0=PwWordVw=2w0=Pw0w1EdgG
57 52 56 bitri wWordVw0w1EdgGw=2w0=PwWordVw=2w0=Pw0w1EdgG
58 57 a1i GRegUSGraphKPVwWordVw0w1EdgGw=2w0=PwWordVw=2w0=Pw0w1EdgG
59 10 51 58 3bitrd GRegUSGraphKPVw1WWalksNGw0=PwWordVw=2w0=Pw0w1EdgG
60 59 rabbidva2 GRegUSGraphKPVw1WWalksNG|w0=P=wWordV|w=2w0=Pw0w1EdgG
61 60 fveq2d GRegUSGraphKPVw1WWalksNG|w0=P=wWordV|w=2w0=Pw0w1EdgG
62 1 rusgrnumwrdl2 GRegUSGraphKPVwWordV|w=2w0=Pw0w1EdgG=K
63 61 62 eqtrd GRegUSGraphKPVw1WWalksNG|w0=P=K