Metamath Proof Explorer


Theorem satfdm

Description: The domain of the satisfaction predicate as function over wff codes does not depend on the model M and the binary relation E on M . (Contributed by AV, 13-Oct-2023)

Ref Expression
Assertion satfdm MVEWNXFYnωdomMSatEn=domNSatFn

Proof

Step Hyp Ref Expression
1 fveq2 x=MSatEx=MSatE
2 1 dmeqd x=domMSatEx=domMSatE
3 fveq2 x=NSatFx=NSatF
4 3 dmeqd x=domNSatFx=domNSatF
5 2 4 eqeq12d x=domMSatEx=domNSatFxdomMSatE=domNSatF
6 5 imbi2d x=MVEWNXFYdomMSatEx=domNSatFxMVEWNXFYdomMSatE=domNSatF
7 fveq2 x=yMSatEx=MSatEy
8 7 dmeqd x=ydomMSatEx=domMSatEy
9 fveq2 x=yNSatFx=NSatFy
10 9 dmeqd x=ydomNSatFx=domNSatFy
11 8 10 eqeq12d x=ydomMSatEx=domNSatFxdomMSatEy=domNSatFy
12 11 imbi2d x=yMVEWNXFYdomMSatEx=domNSatFxMVEWNXFYdomMSatEy=domNSatFy
13 fveq2 x=sucyMSatEx=MSatEsucy
14 13 dmeqd x=sucydomMSatEx=domMSatEsucy
15 fveq2 x=sucyNSatFx=NSatFsucy
16 15 dmeqd x=sucydomNSatFx=domNSatFsucy
17 14 16 eqeq12d x=sucydomMSatEx=domNSatFxdomMSatEsucy=domNSatFsucy
18 17 imbi2d x=sucyMVEWNXFYdomMSatEx=domNSatFxMVEWNXFYdomMSatEsucy=domNSatFsucy
19 fveq2 x=nMSatEx=MSatEn
20 19 dmeqd x=ndomMSatEx=domMSatEn
21 fveq2 x=nNSatFx=NSatFn
22 21 dmeqd x=ndomNSatFx=domNSatFn
23 20 22 eqeq12d x=ndomMSatEx=domNSatFxdomMSatEn=domNSatFn
24 23 imbi2d x=nMVEWNXFYdomMSatEx=domNSatFxMVEWNXFYdomMSatEn=domNSatFn
25 rexcom4 vωyx=u𝑔vy=aMω|auEavyvωx=u𝑔vy=aMω|auEav
26 25 rexbii uωvωyx=u𝑔vy=aMω|auEavuωyvωx=u𝑔vy=aMω|auEav
27 ovex MωV
28 27 rabex aMω|auEavV
29 28 isseti yy=aMω|auEav
30 ovex NωV
31 30 rabex aNω|auFavV
32 31 isseti zz=aNω|auFav
33 29 32 2th yy=aMω|auEavzz=aNω|auFav
34 33 anbi2i x=u𝑔vyy=aMω|auEavx=u𝑔vzz=aNω|auFav
35 19.42v yx=u𝑔vy=aMω|auEavx=u𝑔vyy=aMω|auEav
36 19.42v zx=u𝑔vz=aNω|auFavx=u𝑔vzz=aNω|auFav
37 34 35 36 3bitr4i yx=u𝑔vy=aMω|auEavzx=u𝑔vz=aNω|auFav
38 37 rexbii vωyx=u𝑔vy=aMω|auEavvωzx=u𝑔vz=aNω|auFav
39 38 rexbii uωvωyx=u𝑔vy=aMω|auEavuωvωzx=u𝑔vz=aNω|auFav
40 rexcom4 uωyvωx=u𝑔vy=aMω|auEavyuωvωx=u𝑔vy=aMω|auEav
41 26 39 40 3bitr3ri yuωvωx=u𝑔vy=aMω|auEavuωvωzx=u𝑔vz=aNω|auFav
42 rexcom4 vωzx=u𝑔vz=aNω|auFavzvωx=u𝑔vz=aNω|auFav
43 42 rexbii uωvωzx=u𝑔vz=aNω|auFavuωzvωx=u𝑔vz=aNω|auFav
44 41 43 bitri yuωvωx=u𝑔vy=aMω|auEavuωzvωx=u𝑔vz=aNω|auFav
45 rexcom4 uωzvωx=u𝑔vz=aNω|auFavzuωvωx=u𝑔vz=aNω|auFav
46 44 45 bitri yuωvωx=u𝑔vy=aMω|auEavzuωvωx=u𝑔vz=aNω|auFav
47 46 abbii x|yuωvωx=u𝑔vy=aMω|auEav=x|zuωvωx=u𝑔vz=aNω|auFav
48 eqid MSatE=MSatE
49 48 satfv0 MVEWMSatE=xy|uωvωx=u𝑔vy=aMω|auEav
50 49 dmeqd MVEWdomMSatE=domxy|uωvωx=u𝑔vy=aMω|auEav
51 dmopab domxy|uωvωx=u𝑔vy=aMω|auEav=x|yuωvωx=u𝑔vy=aMω|auEav
52 50 51 eqtrdi MVEWdomMSatE=x|yuωvωx=u𝑔vy=aMω|auEav
53 52 adantr MVEWNXFYdomMSatE=x|yuωvωx=u𝑔vy=aMω|auEav
54 eqid NSatF=NSatF
55 54 satfv0 NXFYNSatF=xz|uωvωx=u𝑔vz=aNω|auFav
56 55 dmeqd NXFYdomNSatF=domxz|uωvωx=u𝑔vz=aNω|auFav
57 dmopab domxz|uωvωx=u𝑔vz=aNω|auFav=x|zuωvωx=u𝑔vz=aNω|auFav
58 56 57 eqtrdi NXFYdomNSatF=x|zuωvωx=u𝑔vz=aNω|auFav
59 58 adantl MVEWNXFYdomNSatF=x|zuωvωx=u𝑔vz=aNω|auFav
60 47 53 59 3eqtr4a MVEWNXFYdomMSatE=domNSatF
61 pm2.27 MVEWNXFYMVEWNXFYdomMSatEy=domNSatFydomMSatEy=domNSatFy
62 61 adantl yωMVEWNXFYMVEWNXFYdomMSatEy=domNSatFydomMSatEy=domNSatFy
63 simpr yωMVEWNXFYdomMSatEy=domNSatFydomMSatEy=domNSatFy
64 simprl yωMVEWNXFYMVEW
65 simpl yωMVEWNXFYyω
66 df-3an MVEWyωMVEWyω
67 64 65 66 sylanbrc yωMVEWNXFYMVEWyω
68 satfdmlem MVEWyωdomMSatEy=domNSatFyuMSatEyvMSatEyx=1stu𝑔1stviωx=𝑔i1stuaNSatFybNSatFyx=1sta𝑔1stbiωx=𝑔i1sta
69 67 68 sylan yωMVEWNXFYdomMSatEy=domNSatFyuMSatEyvMSatEyx=1stu𝑔1stviωx=𝑔i1stuaNSatFybNSatFyx=1sta𝑔1stbiωx=𝑔i1sta
70 simprr yωMVEWNXFYNXFY
71 df-3an NXFYyωNXFYyω
72 70 65 71 sylanbrc yωMVEWNXFYNXFYyω
73 id domMSatEy=domNSatFydomMSatEy=domNSatFy
74 73 eqcomd domMSatEy=domNSatFydomNSatFy=domMSatEy
75 satfdmlem NXFYyωdomNSatFy=domMSatEyaNSatFybNSatFyx=1sta𝑔1stbiωx=𝑔i1stauMSatEyvMSatEyx=1stu𝑔1stviωx=𝑔i1stu
76 72 74 75 syl2an yωMVEWNXFYdomMSatEy=domNSatFyaNSatFybNSatFyx=1sta𝑔1stbiωx=𝑔i1stauMSatEyvMSatEyx=1stu𝑔1stviωx=𝑔i1stu
77 69 76 impbid yωMVEWNXFYdomMSatEy=domNSatFyuMSatEyvMSatEyx=1stu𝑔1stviωx=𝑔i1stuaNSatFybNSatFyx=1sta𝑔1stbiωx=𝑔i1sta
78 27 difexi Mω2ndu2ndvV
79 78 isseti ww=Mω2ndu2ndv
80 79 biantru x=1stu𝑔1stvx=1stu𝑔1stvww=Mω2ndu2ndv
81 80 bicomi x=1stu𝑔1stvww=Mω2ndu2ndvx=1stu𝑔1stv
82 81 rexbii vMSatEyx=1stu𝑔1stvww=Mω2ndu2ndvvMSatEyx=1stu𝑔1stv
83 27 rabex mMω|fMifmωi2nduV
84 83 isseti ww=mMω|fMifmωi2ndu
85 84 biantru x=𝑔i1stux=𝑔i1stuww=mMω|fMifmωi2ndu
86 85 bicomi x=𝑔i1stuww=mMω|fMifmωi2ndux=𝑔i1stu
87 86 rexbii iωx=𝑔i1stuww=mMω|fMifmωi2nduiωx=𝑔i1stu
88 82 87 orbi12i vMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduvMSatEyx=1stu𝑔1stviωx=𝑔i1stu
89 88 rexbii uMSatEyvMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduuMSatEyvMSatEyx=1stu𝑔1stviωx=𝑔i1stu
90 30 difexi Nω2nda2ndbV
91 90 isseti zz=Nω2nda2ndb
92 91 biantru x=1sta𝑔1stbx=1sta𝑔1stbzz=Nω2nda2ndb
93 92 bicomi x=1sta𝑔1stbzz=Nω2nda2ndbx=1sta𝑔1stb
94 93 rexbii bNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbbNSatFyx=1sta𝑔1stb
95 30 rabex mNω|fNifmωi2ndaV
96 95 isseti zz=mNω|fNifmωi2nda
97 96 biantru x=𝑔i1stax=𝑔i1stazz=mNω|fNifmωi2nda
98 97 bicomi x=𝑔i1stazz=mNω|fNifmωi2ndax=𝑔i1sta
99 98 rexbii iωx=𝑔i1stazz=mNω|fNifmωi2ndaiωx=𝑔i1sta
100 94 99 orbi12i bNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2ndabNSatFyx=1sta𝑔1stbiωx=𝑔i1sta
101 100 rexbii aNSatFybNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2ndaaNSatFybNSatFyx=1sta𝑔1stbiωx=𝑔i1sta
102 77 89 101 3bitr4g yωMVEWNXFYdomMSatEy=domNSatFyuMSatEyvMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduaNSatFybNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2nda
103 19.42v wx=1stu𝑔1stvw=Mω2ndu2ndvx=1stu𝑔1stvww=Mω2ndu2ndv
104 103 bicomi x=1stu𝑔1stvww=Mω2ndu2ndvwx=1stu𝑔1stvw=Mω2ndu2ndv
105 104 rexbii vMSatEyx=1stu𝑔1stvww=Mω2ndu2ndvvMSatEywx=1stu𝑔1stvw=Mω2ndu2ndv
106 rexcom4 vMSatEywx=1stu𝑔1stvw=Mω2ndu2ndvwvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndv
107 105 106 bitri vMSatEyx=1stu𝑔1stvww=Mω2ndu2ndvwvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndv
108 19.42v wx=𝑔i1stuw=mMω|fMifmωi2ndux=𝑔i1stuww=mMω|fMifmωi2ndu
109 108 bicomi x=𝑔i1stuww=mMω|fMifmωi2nduwx=𝑔i1stuw=mMω|fMifmωi2ndu
110 109 rexbii iωx=𝑔i1stuww=mMω|fMifmωi2nduiωwx=𝑔i1stuw=mMω|fMifmωi2ndu
111 rexcom4 iωwx=𝑔i1stuw=mMω|fMifmωi2nduwiωx=𝑔i1stuw=mMω|fMifmωi2ndu
112 110 111 bitri iωx=𝑔i1stuww=mMω|fMifmωi2nduwiωx=𝑔i1stuw=mMω|fMifmωi2ndu
113 107 112 orbi12i vMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduwvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndvwiωx=𝑔i1stuw=mMω|fMifmωi2ndu
114 19.43 wvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2nduwvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndvwiωx=𝑔i1stuw=mMω|fMifmωi2ndu
115 114 bicomi wvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndvwiωx=𝑔i1stuw=mMω|fMifmωi2nduwvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
116 113 115 bitri vMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduwvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
117 116 rexbii uMSatEyvMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduuMSatEywvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
118 rexcom4 uMSatEywvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2nduwuMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
119 117 118 bitri uMSatEyvMSatEyx=1stu𝑔1stvww=Mω2ndu2ndviωx=𝑔i1stuww=mMω|fMifmωi2nduwuMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
120 19.42v zx=1sta𝑔1stbz=Nω2nda2ndbx=1sta𝑔1stbzz=Nω2nda2ndb
121 120 bicomi x=1sta𝑔1stbzz=Nω2nda2ndbzx=1sta𝑔1stbz=Nω2nda2ndb
122 121 rexbii bNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbbNSatFyzx=1sta𝑔1stbz=Nω2nda2ndb
123 rexcom4 bNSatFyzx=1sta𝑔1stbz=Nω2nda2ndbzbNSatFyx=1sta𝑔1stbz=Nω2nda2ndb
124 122 123 bitri bNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbzbNSatFyx=1sta𝑔1stbz=Nω2nda2ndb
125 19.42v zx=𝑔i1staz=mNω|fNifmωi2ndax=𝑔i1stazz=mNω|fNifmωi2nda
126 125 bicomi x=𝑔i1stazz=mNω|fNifmωi2ndazx=𝑔i1staz=mNω|fNifmωi2nda
127 126 rexbii iωx=𝑔i1stazz=mNω|fNifmωi2ndaiωzx=𝑔i1staz=mNω|fNifmωi2nda
128 rexcom4 iωzx=𝑔i1staz=mNω|fNifmωi2ndaziωx=𝑔i1staz=mNω|fNifmωi2nda
129 127 128 bitri iωx=𝑔i1stazz=mNω|fNifmωi2ndaziωx=𝑔i1staz=mNω|fNifmωi2nda
130 124 129 orbi12i bNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2ndazbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbziωx=𝑔i1staz=mNω|fNifmωi2nda
131 19.43 zbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2ndazbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbziωx=𝑔i1staz=mNω|fNifmωi2nda
132 131 bicomi zbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbziωx=𝑔i1staz=mNω|fNifmωi2ndazbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
133 130 132 bitri bNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2ndazbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
134 133 rexbii aNSatFybNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2ndaaNSatFyzbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
135 rexcom4 aNSatFyzbNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2ndazaNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
136 134 135 bitri aNSatFybNSatFyx=1sta𝑔1stbzz=Nω2nda2ndbiωx=𝑔i1stazz=mNω|fNifmωi2ndazaNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
137 102 119 136 3bitr3g yωMVEWNXFYdomMSatEy=domNSatFywuMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2nduzaNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
138 137 abbidv yωMVEWNXFYdomMSatEy=domNSatFyx|wuMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=x|zaNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
139 dmopab domxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=x|wuMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
140 dmopab domxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda=x|zaNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
141 138 139 140 3eqtr4g yωMVEWNXFYdomMSatEy=domNSatFydomxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=domxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
142 63 141 uneq12d yωMVEWNXFYdomMSatEy=domNSatFydomMSatEydomxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=domNSatFydomxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
143 dmun domMSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=domMSatEydomxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
144 dmun domNSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda=domNSatFydomxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
145 142 143 144 3eqtr4g yωMVEWNXFYdomMSatEy=domNSatFydomMSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=domNSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
146 simpl MVEWMV
147 146 adantr MVEWNXFYMV
148 simpr MVEWEW
149 148 adantr MVEWNXFYEW
150 48 satfvsuc MVEWyωMSatEsucy=MSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
151 147 149 65 150 syl2an23an yωMVEWNXFYMSatEsucy=MSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
152 151 dmeqd yωMVEWNXFYdomMSatEsucy=domMSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu
153 simprl MVEWNXFYNX
154 simprr MVEWNXFYFY
155 54 satfvsuc NXFYyωNSatFsucy=NSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
156 153 154 65 155 syl2an23an yωMVEWNXFYNSatFsucy=NSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
157 156 dmeqd yωMVEWNXFYdomNSatFsucy=domNSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
158 152 157 eqeq12d yωMVEWNXFYdomMSatEsucy=domNSatFsucydomMSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=domNSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
159 158 adantr yωMVEWNXFYdomMSatEy=domNSatFydomMSatEsucy=domNSatFsucydomMSatEyxw|uMSatEyvMSatEyx=1stu𝑔1stvw=Mω2ndu2ndviωx=𝑔i1stuw=mMω|fMifmωi2ndu=domNSatFyxz|aNSatFybNSatFyx=1sta𝑔1stbz=Nω2nda2ndbiωx=𝑔i1staz=mNω|fNifmωi2nda
160 145 159 mpbird yωMVEWNXFYdomMSatEy=domNSatFydomMSatEsucy=domNSatFsucy
161 160 ex yωMVEWNXFYdomMSatEy=domNSatFydomMSatEsucy=domNSatFsucy
162 62 161 syld yωMVEWNXFYMVEWNXFYdomMSatEy=domNSatFydomMSatEsucy=domNSatFsucy
163 162 ex yωMVEWNXFYMVEWNXFYdomMSatEy=domNSatFydomMSatEsucy=domNSatFsucy
164 163 com23 yωMVEWNXFYdomMSatEy=domNSatFyMVEWNXFYdomMSatEsucy=domNSatFsucy
165 6 12 18 24 60 164 finds nωMVEWNXFYdomMSatEn=domNSatFn
166 165 impcom MVEWNXFYnωdomMSatEn=domNSatFn
167 166 ralrimiva MVEWNXFYnωdomMSatEn=domNSatFn