Metamath Proof Explorer


Theorem segcon2

Description: Generalization of axsegcon . This time, we generate an endpoint for a segment on the ray Q A congruent to B C and starting at Q , as opposed to axsegcon , where the segment starts at A (Contributed by Scott Fenton, 14-Oct-2013) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013)

Ref Expression
Assertion segcon2 NQ𝔼NA𝔼NB𝔼NC𝔼Nx𝔼NABtwnQxxBtwnQAQxCgrBC

Proof

Step Hyp Ref Expression
1 breq1 A=QABtwnQxQBtwnQx
2 1 orbi1d A=QABtwnQxxBtwnQAQBtwnQxxBtwnQA
3 2 anbi1d A=QABtwnQxxBtwnQAQxCgrBCQBtwnQxxBtwnQAQxCgrBC
4 3 rexbidv A=Qx𝔼NABtwnQxxBtwnQAQxCgrBCx𝔼NQBtwnQxxBtwnQAQxCgrBC
5 simp1 NQ𝔼NA𝔼NB𝔼NC𝔼NN
6 simp2 NQ𝔼NA𝔼NB𝔼NC𝔼NQ𝔼NA𝔼N
7 6 ancomd NQ𝔼NA𝔼NB𝔼NC𝔼NA𝔼NQ𝔼N
8 axsegcon NA𝔼NQ𝔼NA𝔼NQ𝔼Na𝔼NQBtwnAaQaCgrAQ
9 5 7 7 8 syl3anc NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NQBtwnAaQaCgrAQ
10 9 adantr NQ𝔼NA𝔼NB𝔼NC𝔼NAQa𝔼NQBtwnAaQaCgrAQ
11 simpl1 NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NN
12 simpr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Na𝔼N
13 simpl2l NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NQ𝔼N
14 simpl3 NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NB𝔼NC𝔼N
15 axsegcon Na𝔼NQ𝔼NB𝔼NC𝔼Nx𝔼NQBtwnaxQxCgrBC
16 11 12 13 14 15 syl121anc NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NQBtwnaxQxCgrBC
17 16 adantr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NAQQBtwnAaQaCgrAQx𝔼NQBtwnaxQxCgrBC
18 anass NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NNQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼N
19 df-3an AQQBtwnAaQaCgrAQQBtwnaxAQQBtwnAaQaCgrAQQBtwnax
20 simpr1 NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxAQ
21 simpr2r NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQaCgrAQ
22 simpl1 NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NN
23 simpl2l NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NQ𝔼N
24 simprl NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼Na𝔼N
25 simpl2r NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NA𝔼N
26 cgrdegen NQ𝔼Na𝔼NA𝔼NQ𝔼NQaCgrAQQ=aA=Q
27 22 23 24 25 23 26 syl122anc NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NQaCgrAQQ=aA=Q
28 27 adantr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQaCgrAQQ=aA=Q
29 21 28 mpd NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQ=aA=Q
30 29 necon3bid NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQaAQ
31 20 30 mpbird NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQa
32 31 necomd NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxaQ
33 simpr2l NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQBtwnAa
34 22 23 25 24 33 btwncomand NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQBtwnaA
35 simpr3 NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQBtwnax
36 simprr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼Nx𝔼N
37 btwnconn2 Na𝔼NQ𝔼NA𝔼Nx𝔼NaQQBtwnaAQBtwnaxABtwnQxxBtwnQA
38 22 24 23 25 36 37 syl122anc NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NaQQBtwnaAQBtwnaxABtwnQxxBtwnQA
39 38 adantr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxaQQBtwnaAQBtwnaxABtwnQxxBtwnQA
40 32 34 35 39 mp3and NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxABtwnQxxBtwnQA
41 19 40 sylan2br NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxABtwnQxxBtwnQA
42 41 expr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxABtwnQxxBtwnQA
43 42 anim1d NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQxCgrBCABtwnQxxBtwnQAQxCgrBC
44 18 43 sylanb NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼Nx𝔼NAQQBtwnAaQaCgrAQQBtwnaxQxCgrBCABtwnQxxBtwnQAQxCgrBC
45 44 an32s NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NAQQBtwnAaQaCgrAQx𝔼NQBtwnaxQxCgrBCABtwnQxxBtwnQAQxCgrBC
46 45 reximdva NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NAQQBtwnAaQaCgrAQx𝔼NQBtwnaxQxCgrBCx𝔼NABtwnQxxBtwnQAQxCgrBC
47 17 46 mpd NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NAQQBtwnAaQaCgrAQx𝔼NABtwnQxxBtwnQAQxCgrBC
48 47 expr NQ𝔼NA𝔼NB𝔼NC𝔼Na𝔼NAQQBtwnAaQaCgrAQx𝔼NABtwnQxxBtwnQAQxCgrBC
49 48 an32s NQ𝔼NA𝔼NB𝔼NC𝔼NAQa𝔼NQBtwnAaQaCgrAQx𝔼NABtwnQxxBtwnQAQxCgrBC
50 49 rexlimdva NQ𝔼NA𝔼NB𝔼NC𝔼NAQa𝔼NQBtwnAaQaCgrAQx𝔼NABtwnQxxBtwnQAQxCgrBC
51 10 50 mpd NQ𝔼NA𝔼NB𝔼NC𝔼NAQx𝔼NABtwnQxxBtwnQAQxCgrBC
52 simp2l NQ𝔼NA𝔼NB𝔼NC𝔼NQ𝔼N
53 simp3 NQ𝔼NA𝔼NB𝔼NC𝔼NB𝔼NC𝔼N
54 axsegcon NQ𝔼NQ𝔼NB𝔼NC𝔼Nx𝔼NQBtwnQxQxCgrBC
55 5 52 52 53 54 syl121anc NQ𝔼NA𝔼NB𝔼NC𝔼Nx𝔼NQBtwnQxQxCgrBC
56 orc QBtwnQxQBtwnQxxBtwnQA
57 56 anim1i QBtwnQxQxCgrBCQBtwnQxxBtwnQAQxCgrBC
58 57 reximi x𝔼NQBtwnQxQxCgrBCx𝔼NQBtwnQxxBtwnQAQxCgrBC
59 55 58 syl NQ𝔼NA𝔼NB𝔼NC𝔼Nx𝔼NQBtwnQxxBtwnQAQxCgrBC
60 4 51 59 pm2.61ne NQ𝔼NA𝔼NB𝔼NC𝔼Nx𝔼NABtwnQxxBtwnQAQxCgrBC