Metamath Proof Explorer


Theorem serf0

Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 16-Feb-2014)

Ref Expression
Hypotheses caucvgb.1 Z=M
serf0.2 φM
serf0.3 φFV
serf0.4 φseqM+Fdom
serf0.5 φkZFk
Assertion serf0 φF0

Proof

Step Hyp Ref Expression
1 caucvgb.1 Z=M
2 serf0.2 φM
3 serf0.3 φFV
4 serf0.4 φseqM+Fdom
5 serf0.5 φkZFk
6 1 caucvgb MseqM+FdomseqM+Fdomx+jZmjseqM+FmseqM+FmseqM+Fj<x
7 2 4 6 syl2anc φseqM+Fdomx+jZmjseqM+FmseqM+FmseqM+Fj<x
8 4 7 mpbid φx+jZmjseqM+FmseqM+FmseqM+Fj<x
9 1 cau3 x+jZmjseqM+FmseqM+FmseqM+Fj<xx+jZmjseqM+FmkmseqM+FmseqM+Fk<x
10 8 9 sylib φx+jZmjseqM+FmkmseqM+FmseqM+Fk<x
11 1 peano2uzs jZj+1Z
12 11 adantl φjZj+1Z
13 eluzelz mjm
14 uzid mmm
15 peano2uz mmm+1m
16 fveq2 k=m+1seqM+Fk=seqM+Fm+1
17 16 oveq2d k=m+1seqM+FmseqM+Fk=seqM+FmseqM+Fm+1
18 17 fveq2d k=m+1seqM+FmseqM+Fk=seqM+FmseqM+Fm+1
19 18 breq1d k=m+1seqM+FmseqM+Fk<xseqM+FmseqM+Fm+1<x
20 19 rspcv m+1mkmseqM+FmseqM+Fk<xseqM+FmseqM+Fm+1<x
21 13 14 15 20 4syl mjkmseqM+FmseqM+Fk<xseqM+FmseqM+Fm+1<x
22 21 adantld mjseqM+FmkmseqM+FmseqM+Fk<xseqM+FmseqM+Fm+1<x
23 22 ralimia mjseqM+FmkmseqM+FmseqM+Fk<xmjseqM+FmseqM+Fm+1<x
24 simpr φjZjZ
25 24 1 eleqtrdi φjZjM
26 eluzelz jMj
27 25 26 syl φjZj
28 eluzp1m1 jkj+1k1j
29 27 28 sylan φjZkj+1k1j
30 fveq2 m=k1seqM+Fm=seqM+Fk1
31 fvoveq1 m=k1seqM+Fm+1=seqM+Fk-1+1
32 30 31 oveq12d m=k1seqM+FmseqM+Fm+1=seqM+Fk1seqM+Fk-1+1
33 32 fveq2d m=k1seqM+FmseqM+Fm+1=seqM+Fk1seqM+Fk-1+1
34 33 breq1d m=k1seqM+FmseqM+Fm+1<xseqM+Fk1seqM+Fk-1+1<x
35 34 rspcv k1jmjseqM+FmseqM+Fm+1<xseqM+Fk1seqM+Fk-1+1<x
36 29 35 syl φjZkj+1mjseqM+FmseqM+Fm+1<xseqM+Fk1seqM+Fk-1+1<x
37 1 2 5 serf φseqM+F:Z
38 37 ad2antrr φjZkj+1seqM+F:Z
39 1 uztrn2 jZk1jk1Z
40 24 29 39 syl2an2r φjZkj+1k1Z
41 38 40 ffvelcdmd φjZkj+1seqM+Fk1
42 1 uztrn2 j+1Zkj+1kZ
43 12 42 sylan φjZkj+1kZ
44 38 43 ffvelcdmd φjZkj+1seqM+Fk
45 41 44 abssubd φjZkj+1seqM+Fk1seqM+Fk=seqM+FkseqM+Fk1
46 eluzelz kj+1k
47 46 adantl φjZkj+1k
48 47 zcnd φjZkj+1k
49 ax-1cn 1
50 npcan k1k-1+1=k
51 48 49 50 sylancl φjZkj+1k-1+1=k
52 51 fveq2d φjZkj+1seqM+Fk-1+1=seqM+Fk
53 52 oveq2d φjZkj+1seqM+Fk1seqM+Fk-1+1=seqM+Fk1seqM+Fk
54 53 fveq2d φjZkj+1seqM+Fk1seqM+Fk-1+1=seqM+Fk1seqM+Fk
55 2 ad2antrr φjZkj+1M
56 eluzp1p1 jMj+1M+1
57 25 56 syl φjZj+1M+1
58 eqid M+1=M+1
59 58 uztrn2 j+1M+1kj+1kM+1
60 57 59 sylan φjZkj+1kM+1
61 seqm1 MkM+1seqM+Fk=seqM+Fk1+Fk
62 55 60 61 syl2anc φjZkj+1seqM+Fk=seqM+Fk1+Fk
63 62 oveq1d φjZkj+1seqM+FkseqM+Fk1=seqM+Fk1+Fk-seqM+Fk1
64 5 adantlr φjZkZFk
65 43 64 syldan φjZkj+1Fk
66 41 65 pncan2d φjZkj+1seqM+Fk1+Fk-seqM+Fk1=Fk
67 63 66 eqtr2d φjZkj+1Fk=seqM+FkseqM+Fk1
68 67 fveq2d φjZkj+1Fk=seqM+FkseqM+Fk1
69 45 54 68 3eqtr4d φjZkj+1seqM+Fk1seqM+Fk-1+1=Fk
70 69 breq1d φjZkj+1seqM+Fk1seqM+Fk-1+1<xFk<x
71 36 70 sylibd φjZkj+1mjseqM+FmseqM+Fm+1<xFk<x
72 71 ralrimdva φjZmjseqM+FmseqM+Fm+1<xkj+1Fk<x
73 23 72 syl5 φjZmjseqM+FmkmseqM+FmseqM+Fk<xkj+1Fk<x
74 fveq2 n=j+1n=j+1
75 74 raleqdv n=j+1knFk<xkj+1Fk<x
76 75 rspcev j+1Zkj+1Fk<xnZknFk<x
77 12 73 76 syl6an φjZmjseqM+FmkmseqM+FmseqM+Fk<xnZknFk<x
78 77 rexlimdva φjZmjseqM+FmkmseqM+FmseqM+Fk<xnZknFk<x
79 78 ralimdv φx+jZmjseqM+FmkmseqM+FmseqM+Fk<xx+nZknFk<x
80 10 79 mpd φx+nZknFk<x
81 eqidd φkZFk=Fk
82 1 2 3 81 5 clim0c φF0x+nZknFk<x
83 80 82 mpbird φF0